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ABSTRACT

The objective of this work is to evaluate the utility of hyperspectral signature data

in satisfying time-sensitive intelligence requirements.  This work is conducted in support of

the Hyperspectral MASINT Support to Military Operations (HYMSMO) program.  Data

are used from the Hyperspectral Digital Imaging Collection Experiment (HYDICE)

imaging spectrometer using the 0.4 µm to 2.5 µm wavelength range.  Operation Forest

Radiance I was the third in a series of HYMSMO-sponsored collection and exploitation

experiments, and the data set analyzed herein was derived from this effort.  The first phase

of the Forest Radiance experiment emphasized the collection of spectra from a suite of

overtly exposed mobile vehicles, decoys, and target panels.  Analysis shown here was

conducted to determine if it is possible to detect and discriminate real and decoy vehicles.

The Low Probability of Detection (LPD) and Spectral Angle Mapper (SAM) anomaly

detection and classification algorithms are applied to the data set being analyzed.  The

LPD algorithm performs well at detecting residual spectra, but produces a significant

number of false alarms.  The SAM technique is equally successful at detecting residual

spectra and proves to have an advantage over the LPD when it comes to obviating

misidentifications.  This thesis shows that detection and discrimination of mobile vehicles

(HMMWVs) and decoys in a natural grass environment is possible using this technology.
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I.  INTRODUCTION

Remote sensing is the science of gathering information about an object without

having direct contact with it.  The quantity most often measured is the electromagnetic

(EM) energy reflecting or emanating from the object of interest.  For decades,

photographic cameras have been used to produce quality hardcopy imagery products for

manual analysis.  Recent years, however, have witnessed significant technological

advances in the design of more sophisticated collection methods capable of recording EM

radiation digitally.  This technique has proven extremely reliable and has increased the

ability to quickly and accurately measure and process large quantities of imaging data.

Storing EM radiation digitally has also accelerated the development of new approaches to

quantifying target-energy interaction well beyond the traditional image-oriented

technologies.  One such technology to emerge involves simultaneous acquisition of images

and spectra.  This technology is commonly referred to as imaging spectroscopy.

Imaging spectroscopy has acquired the cognomen of “hyperspectral imaging.”

Hyperspectral imagers provide a new dimension in exploiting the EM spectrum,

particularly in the visible, near-infrared (NIR) and short-wave-infrared (SWIR) regions.

These instruments are capable of collecting reflected solar data over a large number of

discrete, contiguous spectral bands or channels.  This capability represents a major

advance in the collection and exploitation of signature data by providing near-complete

spectral coverage of sufficient resolution to identify narrow absorption features of both

natural and man-made objects.  It is this increased level in spectral resolution that makes

the observation of subtle variations in a material’s spectra possible for the first time.

Hence, the principal goals of hyperspectral imaging can be described as the observation of

radiometric, spectral, spatial, and temporal variation which quantify information about the

distribution of energy leaving objects of interest.

The military is currently evaluating the utility of hyperspectral signature data and

exploitation techniques to satisfy time-sensitive intelligence requirements.  Through the
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years the military has relied heavily upon manual interpretation of pan-chromatic imagery

to identify point targets based solely on their spatial characteristics.  Today, hyperspectral

imagers emphasize the spectral element of an image scene, which can provide insight into

the properties of surface materials and provide valuable information about identities and

conditions of terrain, vegetation, and objects.  This technology has allowed us to push

beyond the spatial exploitation of panchromatic imagery; that is, an analyst can now make

analytical determinations based on the object’s unique spectral signature.  The opportunity

for real-time adaptive processing is feasible and particularly important, especially in

contrast to the present labor-intensive manual processes now being employed.  All

hyperspectral image data collected and processed for military use currently falls under the

purview of the Measure and Signature Intelligence (MASINT) community of the

Department of Defense (DoD).

The work presented here is part of the Hyperspectral MASINT Support to

Military Operations (HYMSMO) program (pronounced “High-Mizz-Mo”).  The program

can be traced back to a Defense Intelligence Agency (DIA) sponsored survey that

identified vetted Support to Military Operations (SMO) requirements uniquely suited to

the MASINT community.  The HYMSMO program was established to demonstrate and,

if possible, validate the utility of these new imaging technologies as a means to satisfy

these high priority needs.  The technology validation phase of the program is well

underway and the results to date show great promise.  The technology can be applied to

the traditional Scientific and Technical Intelligence (S&TI) role of the MASINT

community, as well as the more non-traditional MASINT applications.  These SMO

requirements can be either strategic in nature, in the form of  treaty compliance and

verification missions, or focus on the more operational and tactical reconnaissance and

surveillance operations.

The HYMSMO program evolved from a Congressionally-funded “Dual Use”

initiative which leveraged from existing civilian-controlled multispectral imaging

programs.  The workhorse of the program is the Hyperspectral Digital Imaging Collection
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Experiment (HYDICE) instrument.  The HYDICE instrument brings cutting edge

technology to challenging intelligence problems by providing extremely high spectral

fidelity, increased spatial resolution, and superior dynamic range and signal-to-noise

performance.  The HYDICE Project Office (HYPO) is designated the executive agent for

all HYDICE operations.  The HYPO is an end-to-end organization whose responsibilities

span all aspects of program operation, from transforming user requests into tailored

experiments and mission flight profiles, to the processing of raw data for exploitation and

dissemination.  The organization consists of four core groups or functional components: a

sensor development team; a collection team; an exploitation team; and an advanced

systems technology team.  Each of these groups are staffed by highly trained professionals

working in the fields of geology, physics, engineering, computer science, and aviation.

The HYPO has designed and executed five data collection experiments during CY-

94 and CY-95.  The purpose of these applied remote sensing experiments were to

ascertain the utility of the technology to satisfy the Levels of Information (LOIs) identified

by each of the services.  The experiments were designed with the philosophy of first trying

to satisfy as many SMO requirements as possible and to conclude with a bottom-up

technology assessment.  The experiments are typically executed at a single collection site.

Observables include overtly exposed, partially exposed, and concealed targets (i.e.,

military vehicles, decoys, camouflage netting, painted wood, metal, and canvas panels)

situated in a target array to facilitate collection and exploitation.  The first of these

experiments, Operation Desert Radiance I, was conducted in October 1994.  Operation

Desert Radiance II, June 1995, Operations Forest Radiance I and Urban Radiance I,

August 1995, and Operation Island Radiance, October 1995, rounded out the non-literal

collection experiments scheduled during this time frame.  The Forest Radiance I

experiment was staged at the U.S. Army’s Aberdeen Proving Grounds, MD, from 18-31

August, and the data sets exploited herein were derived from this operation.

  This thesis is broken down into six chapters.  Chapter I is the INTRODUCTION.

Chapter II, BACKGROUND, provides the reader with an understanding of the
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hyperspectral imaging concept and a historical summary of various multiband imaging

technologies.  Chapter III, MILITARY APPLICATIONS, describes the classes of

applications and describes the technology’s tactical utility.  Chapter IV, EXPERIMENT

DESCRIPTION, defines the objective and presents a physical description of the collection

site.  Chapter V, OBSERVATIONS AND ANALYSIS, describes the data set analyzed

and presents the results of the analyses.  Chapter VI, contains the CONCLUSIONS AND

RECOMMENDATIONS drawn from Chapter V.
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II.  BACKGROUND

A.  DEVELOPMENT OF IMAGING SPECTROSCOPY

Imaging spectroscopy is based upon the observed spectral differences that are

either reflected or emitted from an object of interest.  This principle forms a basis for

understanding the concept of hyperspectral imaging.  Imaging spectroscopy can be

characterized as the science of observing spectral differences among materials and objects

for the purpose of deriving information about them (Campbell, 1987).

1.  Basic Characteristics

Remote sensing systems collect and record the EM radiation leaving the surface of

an object, generally emphasizing select portions of the spectrum.  Figure 2.1 illustrates the

spectral imagery components that interact to create the recorded signature.  The yellow

lines provide a visual trace of the sun’s energy interacting with objects on the

Figure 2.1.  Spectral Imaging Components (From MUG, 1995)
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earth’s surface and the path it takes towards the collection sensor.  Thermal sources are

also present in the figure and its path is shown in red.

The most obvious portion of the spectrum to exploit is the visible region, which

encompasses only a small fraction of the full EM spectrum (0.4 µm to 0.7 µm).  A major

advantage of hyperspectral imaging is the capability to record radiance data from the part

of the spectrum not visible to the naked eye.  The primary regions of the EM spectrum

used in remote sensing are shown on the in Figure 2.2.  The reflected solar energy is

defined by the ultra violate (UV), visible, near-infrared (NIR), and short-wave-infrared

(SWIR) regions of the spectral continuum.  The mid-wave-infrared (MWIR) is

Figure 2.2.  Electromagnetic Spectrum

characterized as a mix of reflected solar radiation and emitted (thermal) energy.  The

longwave-infrared (LWIR) region is dominated entirely by thermal emissions.  The regions

examined in this thesis are focused on the visible, NIR, and SWIR regions of the spectrum.

The NIR and SWIR are defined as those regions immediately adjacent to the visible

region, from 0.7 µm to 1.1 µm and 1.1 µm to 2.5 µm, respectively.

Solar radiation must first pass through the Earth’s atmosphere before it can

interact with an object on the ground.  As the energy travels through the atmospheric

medium it can be either absorbed or scattered by various airborne gases or particulates.
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Figure 2.3 illustrates the physical processes of how solar energy interacts with the

atmosphere before it reaches the Earth’s surface.  This process is largely dependent upon

Figure 2.3.  Atmospheric Effects (From LANDSAT Advertisement, 1985)

the wavelength of the solar energy and the size of the absorber or scatterer.  The portion

of the energy that reaches the object and reflects in the direction of the sensor is recorded

by its optics.  This reflected energy is again subjected to the intervening atmosphere as it

travels towards the sensor.  Once the light enters the sensor it is then converted into an

electrical signal and recorded as radiance value or digital number (DN).  The recorded

spectral signature is a function of the properties of the irradiated object.

2.  Imaging Concept

Spectral imaging can be categorized as either multispectral, hyperspectral, or

ultraspectral, as shown in Figure 2.4.  The multispectral sensors record data in tens of

bands, hyperspectral in the hundreds, and ultraspectral will collect in the thousands.

Ultraspectral sensors are still in the research and development phase, but proof-of-concept

efforts are currently underway in the field.
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Figure 2.4.  Spectral Imaging Types (From MUG, 1995)

a.  Data Presentation

Hyperspectral imaging is generally described as a measurement of energy

from both natural and man-made surfaces.  The measured intensity as a function of

wavelength (λ) creates a spectral record of a given material in hundreds of contiguous

bands within a specific portion of the EM spectrum.  For reflected solar energy this

spectral record is based upon the variations in reflectance between .4 µm to 2.5 µm, and is

typically represented by either a 2-dimensional graphical plot or a 3-dimensional image

cube.  Figure 2.5 illustrates the line spectra and image cube concept.  The ordinates of the

2-dimensional line spectral plot are percent reflectance (R) versus wavelength.  The 3-

dimensional image cube is formed from a stack of images whose spatial axes correspond

to the physical location and structure of the imaged objects.  The third axis corresponds to

the number of wavelength bands of the sensor.



9

Figure 2.5.  Hyperspectral Concept (From AVIRIS Advertisement, 1992)

b.  Information Extraction

Hyperspectral imaging has a wide range of applications in the fields of

geology, botany, oceanography, and phenomenology.  The intent is to record spectral

variations over a broad range of wavelengths in order to spectrally detected, classified,

and identified materials of interest.  The power of this concept came be seen in Figure 2.6,

where the line spectral plot of three clay minerals (Kaolinite, Montmorillonite, and

Muscovite) and two carbonate (Calcite and Siderite) are superimposed.  Observe that each

material can be clearly identified by its own unique spectral signature.  Kaolinite, for

example, can be identified by the two strong, single absorption features located at 1.4 µm

and 2.3 µm.  The Montmorillonite also has two equally strong features at 1.4 µm and 2.2

µm, and one significant feature at 1.9 µm, while Muscovite exhibits a very small feature at

1.4 µm and a strong one at 2.2 µm.  Calcite, on the other hand, exhibits a strong double

absorption feature at 2.2 µm, and has a relatively uniform reflectance from 0.8 µm to 2.1

µm.  Also note that the Siderite has virtually no reflectance value at 1.0 µm, but increases
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rapidly to its maximum reflectance value at 2.1 µm.  Siderite also shows a significant

absorption feature at 2.3 µm.

Figure 2.6.  Mineral Surface Reflectance (From Rinker, 1990)

In addition to these spectral features, the variation in percent reflectance

(albedo) between these five materials provides another measure of spectral seperability.

The spectral reflectance characteristics of a mineral is heavily influenced by a number of

factors.  The shape or structure of the spectra at wavelengths near 0.92 µm is dominated

by electronic transitions in the d-cell electrons.  At 1.0 µm, vibrational absorption occurs

due to the presence of  bound and unbound water molecules in the material.  Absorption

in the 2.1 µm to 2.4 µm region is attributed to combination bending-stretching overtones

in OH vibrations (Vane et al., 1993).  Knowledge of these physical processes allows us to

understand the variations in spectra observed in natural materials.

Reflectance curves of vegetation are inherently less structured than those of

minerals in the 0.4 µm to 2.5 µm range, and show even more natural variability.   Figure
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2.7 shows a typical reflectance spectra for green vegetation from 0.4 µm to 0.9 µm.  The

visible portion of the spectrum is dominated primarily by absorption associated

Figure 2.7.  Vegetative Reflectance Curves (From Richards, 1995)

with the vegetation’s chlorophyll pigment.  In the NIR region, reflectance increases

sharply at wavelengths longward of 0.7 µm.  This region is termed the red edge of the

chlorophyll band.  Absorption in the MWIR region is dominated by the extremely high

water content typically found in green leaf vegetation.  These spectra vary in this region

since the water content varies substantially in healthy vegetation (Hoffer et al., 1978).

The diagnostic study of spectral signatures and absorption features can

generally be divided into the three categories: detection; classification; and identification.

Detection is primarily accomplished by observing and identifying pixels of different

reflectance values.  Changes in these values can be attributed to various changes in a

material’s albedo, physical structure, chemical composition, or illumination geometry.

After an object is detected, the next step is to classify the object as a target type.  Target
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classification can be accomplished by grouping all pixels possessing the same brightness

values, specific absorption characteristics, or overall spectral features into the same class.

The final and most difficult step is to spectrally identify the material.  The difficulty here is

that material identification is more like a “black art” than an exact science.  Final

identification is typically based upon the experience level of the analyst, rather than a

single analytical technique (Elachi, 1987).

c.  Technological Limitations

The primary limitation associated with observing subtle spectral variations

is determined by the total number of spectral bands supported by a sensor.  The

LANDSAT systems, for example, acquires data in a relatively small number of non-

contiguous spectral bands (MSS - five and TM - seven), each band having a nominal

bandpass between 60 to 100 nanometer (nm).  This low number of spectral bands, coupled

with the rather broad bandwidth, precludes resolution of many common absorption

features at certain wavelengths.  Figure 2.8 shows the MSS and TM coverage of six

spectra to illustrate how the gap in spectral coverage could possibly lead to

Figure 2.8.  LANDSAT MSS and TM Coverage (From Vane et al., 1988)
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ambiguities and misidentification.  Also observe that two major atmospheric water

absorption features appear at 1.4 µm and 1.9 µm, rendering these regions completely

unusable.  The more sophisticated hyperspectral imagers enable sampling in hundreds of

narrow, contiguous spectral bands.  The value of this capability lies in the sensor’s ability

to resolve these ambiguities by acquiring a complete reflectance record across the entire

spectrum.

The collection system determines the size of the smallest recognizable

object in an imaged scene.  This spatial resolution is typically referred to as ground

resolution or ground sample distance (GSD), and will vary significantly depending on the

sensor’s design and viewing geometry.  GSD is defined as the distance between the

centers of adjacent pixels.  Varying the altitude of the sensors is the easiest method of

achieving different spatial resolutions and swath widths of the resulting imagery.  Figure

2.9 uses a football field to compare the GSD of various multispectral sensors in use today.

The lower resolution instruments (e.g., 10 to 30 meters (m)) will not normally facilitate

literal detection of objects less than 5 m in size.  It will, however, provide broad

Figure 2.9.  Spectral Resolution of Common Sensors (From MUG, 1995)
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area coverage to detect large geographic formations and linear features like roads and

bridges.  The HYMSMO program is currently exploring several non-literal exploitation

techniques potentially capable of detecting the presence of military relevant targets at the

subpixel level.  However, high resolution of smaller areas is preferred for detection and

identification of most targets of interest.  The HYDICE sensor can obtain a 1 m GSD

when operated at an altitude of 1100 m or less.

 Another characteristic that limits data collection is the instrument’s

scanning mechanism.  The earlier MSS and TM instruments used an optomechanical

system that recorded reflected radiance in a small number of discrete detector elements.

These systems collected spatial information by sweeping the optics back and forth in a

“whisk broom” motion perpendicular to the flight path (Figure 2.10.a).  This technique

was seriously limited by the short residence time of the detector’s instantaneous field of

view (IFOV).  Subsequent MSS and TM designs increase this residence time by

employing line-array detector elements (Figure 2.10.b).  In this configuration each cross-

track pixel had its own detector element in the array, increasing resident time to the

interval needed to move one IFOV along the flight path.  This too, however, had its own

limitations in that each array would require its own spectral bandpass filter.  Another

approach resembling this design involved the addition of a dispersion element to split the

reflected energy of each pixel into as many wavelengths as there are detector elements

(Figure 2.10.c).  This design was also limited to the slower airborne collection missions

until improvements to the optomechanical mechanism could be made.  The preferred

configuration for spaceborne applications is the two-dimensional area-array detectors

which collects radiance data using a “pushbroom” imaging approach (Figure 2.10.d).  This

technique obviated the need for a scanning device by providing an entire column of

detector elements for each cross-track pixel, which increases the exposure time for each

pixel.  In pushbroom imaging, the image is formed by acquiring data through a slit in the

foreoptics and dispersing it onto the area-array detector.  The main problem associated
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Figure 2.10.  Four Approaches to Spectral Scanning: (a) Discrete Line Detectors; (b) Line

Arrays; (c) Line Arrays With Dispersing; and (d) Area Arrays. (From Goetz et al., 1985)

with this configuration is that the optical system must maintain the necessary spatial field

and spectral dispersion throughout the collection process, and variations in sensor

response across the array must be compensated for (Goetz et al., 1985; Herring, 1987).

3.  Imaging Spectrometry Development

To answer the ever-increasing calls for terrestrial analysis, the complexity of

airborne and spaceborne instruments have increased significantly with each successive

generation.  Two specific types of sensors have had a marked impact on the development

of the HYDICE imager.  These include (1) airborne instruments with both high spectral

and spatial resolution, and (2) spaceborne sensors with high spatial resolution but low

spectral resolution.  Some of the more notable imaging systems that contributed to the

development of this sensor and a few that are currently being evaluated are detailed below.
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a.  Evolution

The origins of spectral sampling of the EM spectrum can be traced as far

back as World War I (WWI), when even the most crude comparison techniques proved

useful to imagery analysts.  The first concerted effort to divide the EM spectrum into

discrete spectral bands were conducted during World War II (WWII).  Termed multiband

photography, researchers successfully developed the means to separate the spectrum into

60 to 100 nm bands through a combination of different photographic emulsions and

filters.  These efforts, while rudimentary by today’s standards, represented a significant

advance to improving the targeting and terrain mapping techniques of that era.

The emergence of digital electronic imaging was an extremely important

advance in spectral imaging.  The LANDSAT Multispectral Scanner (MSS) was the first

of these satellites to be deployed in 1972.  This sensor recorded five, 100 nm wide bands:

two in the visible (red and green); two in the NIR; and one the LWIR.  The LANDSAT

program continued to advance with the development of the Thematic Mapper (TM)

design.  TM divided the EM spectrum into seven, 60 nm wide channels: three in the

visible (blue, green and red); one in the NIR; two in the MWIR; and one in the LWIR.

The concept of dividing the EM spectrum into narrower and narrower, discrete spectral

bands continued into the late 1970s with the development of the Shuttle Multispectral

Infrared Radiometer (SMIR) and the Thermal Infrared Mapping Sensor (TIMS ) .  Each of

these instruments, however, still lacked the spectral resolution needed for more precise

surface studies.

The next major development in instrument design facilitated the

acquisition of spectral data over hundreds of discrete, contiguous spectral bands.  These

instruments, referred to as imaging spectrometers, ushered in a new era in multiband

imaging.  The Airborne Imaging Spectrometer (AIS) was the first of these new systems

to emerge.  The AIS multispectral instrument separated the 1 .2 µm to 2.4 µm region of

the spectrum into 128 contiguous bands, each having a nominal bandpass of less than 10

nm.  The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) was the next major

imaging sensor to be put into operation.  This instrument divided the spectrum into 224

contiguous spectral bands from 0.4 µm to 2.5 µm, each channel having a 10 nm wide

bandwidth.  This increase in spectral coverage and resolution was instrumental in
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bringing this technology to a wide range of military applications, to include terrain

analysis, targeting, and intelligence gathering.  The AVIRIS sensor is considered the

archetype hyperspectral imager.  The HYDICE instrument is one of the latest generation

of airborne hyperspectral imagers.  The HYDICE instrument operates in the 0.4 µm to

2.5 µm region, and collects signature data across 210 contiguous spectral bands in 10 nm

wide bandwidths.  HYDICE was the first imaging spectrometer specifically designed and

built to determine the utility of hyperspectral technologies to SMO.  The Portable

Hyperspectral Imager for Low Light Spectroscopy (PHILLS) instrument is the latest

imaging technology to be placed into operation.

b.  LANDSAT MSS and TM

The LANDSAT MSS (Figure 2.11) series satellites went into operation

with the launch of LANDSAT-1 in 1972, followed by LANDSAT-2 (1975), and then

LANDSAT-3 (1978).  These earth observing satellites were developed under the auspices

of the National Aeronautical and Space Administration (NASA) with the intent to

provide complete, continuous coverage of the earth’s surface.  The spacecraft were

placed in a near-polar, sun-synchronous orbit, crossing the sample point on the surface of

the earth at the same local time each day.  At an orbital altitude of 920 kilometers (km),

the MSS scanned across the earth in one direction perpendicular to the flight path of the

spacecraft.  LANDSAT-1 and -2 used four discrete detector elements to record the

reflected energy, and then converted it to machine-readable electronic signals (Figure

2.10.a).  LANDSAT-3 used 5 discrete detectors to perform this function.  Each detector

records the Earth-reflected sunlight at discrete wavelength bands.  As mentioned earlier,

the MSS sensor responds to two wavelengths in the visible (red and green) spectral

region and two in the reflected IR.  LANDSAT-3 had an additional band that responded

to the thermal IR.  These three sensors are no longer operational.
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Figure 2.11.  LANDSAT MSS (From LANDSAT Advertisement, 1985)

The LANDSAT-4 and -5 satellite series are second generation spacecraft

and carry both the MSS and the more capable TM instrument (Figure 2.12).  The

spacecraft were placed in the same orbital plane as the earlier version, but at a lower

altitude of 705 km.  This lower altitude provides a spatial resolution of 30 m for the

visible and 120 m for the thermal IR.  The enhanced TM expands spectral coverage to

detect reflected radiation in seven wavelength bands at key positions in the spectrum:

three visible (blue, green, and red) bands; one in the NIR, two in the MWIR, and one in

the LWIR.  The TM scans with sixteen lines in both directions across the same 185 km

swath width, using a modified scanning approach.  Both LANDSAT-4 and -5 have

already exceeded their operational life expectancy, but continue to operate to this day.
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Figure 2.12.  LANDSAT TM (From LANDSAT Advertisement, 1985)

c.  Airborne Imaging Spectrometer (AIS I/II)

The Airborne Imaging Spectrometer I (AIS I) was the test bed for future

spaceborne infrared collectors and operated at substantially higher spectral resolution than

previous instruments (Figure 2.13).  The AIS I instrument flew in 1984 and 1985.  The

sensor exceeded all program expectations and quickly became in great demand throughout

the remote sensing community.  Its first flight was conducted aboard a DC-3 aircraft and

later flew exclusively aboard a NASA C-130.  AIS successfully recorded over 7,000 miles

of imagery data in the United States, Australia, and Europe during its two years of

operation (Vane, et al., 1988).  The sensor collected radiance data in 128, 9.3 nm wide

spectral bands from 1.2 µm to 2.4 µm.  This sampling interval provided sufficient spectral

resolution to identify fine material absorption features previously left unrecorded by the

earlier instruments.  The aircraft flew at a nominal altitude of  4.2 km, producing a GSD of

approximately 8 m.  The instrument was primarily designed as a test bed for detector

development and was the first to operate using a two-dimensional 32X32
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Figure 2.13.  Airborne Imaging Spectrometer (From Vane et al., 1988)

element detector array (Figure 2.10.d).  This mode of operation obviated the need

for a scanning mechanism and made high speed collection possible.  AIS II was the next

generation of sensors to fly in 1986.  The AIS II was designed to collect data in 160

contiguous, 10.6 nm wide spectral bands from 0.9 µm to 2.4 µm.  It too utilized the same

detector scheme, but developers expanded the detector array to a total of 64X64 elements

(Goetz et al., 1985).

AIS acquired data of the northern Grapevine Mountains on the border

between Nevada and California, from 1984 to 1986.  A total of seven collection

experiments took place over the study area.  The goal here was to analyze hydrothermally

altered rock formations to better define the alteration zones and provide alteration

intensity information.  Reflectance spectra was collected using only the last 32 bands (~2.1

µm to 2.4 µm) of the sensor.  These regions were selected because they contain the

majority of the absorption characteristics associated with most naturally occurring
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minerals.  The strongest absorption features in the material’s spectra was defined as the

wavelength of the bandpass position, and then mapped into a single plane, hue, saturation,

intensity (HSI) color image.  This technique facilitated identification of several mineral

groups throughout the test site, as shown in Figures 2.14a and 2.14b.

The AIS data positively identified Sericite by its absorption features at 2.21

µm, 2.25 µm, and 2.35 µm.  Montmorillonite was found based on its modest absorption

features at 2.21 µm and 2.35 µm.  Calcite and Dolomite were also identified their

absorption features at 2.32 µm and 2.34 µm.  Figure 2.15 maps the mineral distribution

based upon the results of the study.  This AIS generated map was later compared to an in

situ produced map of the test site and was found to be very accurate (Kruse, 1987).

Figures 2.14a and 2.14b.  Material Spectra: (a) Montmorillonite and Sericite; and (b)

Calcite and Dolomite (From Kruse, 1987)
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Figure 2.15.  Mineralogical Map of Northern Grapevine Mountains (From Kruse, 1987)

d.  Airborne Visible/Infrared Imaging Spectrometer (AVIRIS)

The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) was

designed by Jet Propulsion Laboratory (JPL) with the intent of becoming the first

spaceborne hyperspectral imager (Figure 2.16).  The AVIRIS first flew aboard NASA’s

U2 and ER2 aircraft in 1987 to simulate future spaceborne operations.  The normal

airborne operating altitude is approximately 20 km.  At this operating altitude the sensor

generates a ground-swath of over 10 km (614 pixels) wide and provides a spatial

resolution of nearly 20 m.  The AVIRIS instrument provides coverage from 0.4 µm to 2.5

in 224 contiguous bands, each having a nominal bandwidth of 10 nm.  AVIRIS’s ability to

acquire data in 224 narrow channels represented a quantum leap forward in imaging

spectrometer design.  This increase in spectral resolution provides a means to conduct

detailed diagnostic studies of fine absorption features.  The AVIRIS records the collected
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Figure 2.16.  AVIRIS Sensor (From Vane, 1987)

energy on an array of discrete detectors (Figure 2.10.c), mechanically scanning the ground

in a whisk broom motion.  Designers improved on the earlier approach by providing four

line-array detectors for each visible, NIR, and two IR portions of the spectrum, to achieve

simultaneous imaging in all 224 bands (Porter et al., 1987).

In 1992, NASA conducted three overflights of Stanford University’s Jasper

Ridge Biological Preserve (JRBP), located along the central California coast.  The intent

was to collect AVIRIS data in order to discern the fractional changes in foliage and soils

over the growing season.  The data was obtained from the test site on June 2, September

4, and October 6, 1992, to collect a representative sample of the entire growing season.

The raw image data was calibrated to apparent surface reflectance using an atmospheric

scattering model and analyzed with a spectral mixture analysis technique using library

endmembers.  Scene observables consisted of six different types of vegetation typical of

the central coast: serpentine grassland; greenstone grassland; chaparral; evergreen



24

woodland, deciduous woodland; and wetland.  Figures 2.17, 2.18, and 2.19 show the

green fractions for June, September, and October, respectively.

Figure 2.17.  Green Vegetation Fractions for June, 1992 (From Ustin et al., 1994)

Figure 2.18.  Green Vegetation Fractions for September, 1992 (From Ustin et al., 1994)
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Figure 2.19.  Green Vegetation Fractions for October, 1992 (From Ustin et al., 1994)

The spectral differences between plant species are readily apparent.

However, the figures also show that the fraction of green vegetation decreased from June

to October.  These findings are consistent with the California ecosystem during the

summer months.  For example, the grasslands were dry during each of the collection

overflights, and each figure shows a high fraction of dry grass and soil.  The general

pattern on all three dates shows a fractional decrease in green foliage, and a corresponding

increase in dry plant and soil endmembers (Ustin et al.,  1994).

This application of hyperspectral imaging illustrates the ability to detect

subtle feature characteristics in a spectral signature.  This investigation depicts the

application of change detection and monitoring by providing information about the terrain.

This capability to remotely discern information about composition and conditions of the

soil and vegetation has direct military applications.  Further, target detection and,

hopefully, identification depends upon reliable, detailed information about the unique

spectral features of a target source which differ from the surrounding background.  The

more imaging bands available to examine the image scene, the higher the chances are of

detecting and identifying anomalous objects in a natural environment.
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e.  Moderate Resolution Imaging Spectroradiometer (MODIS)

The Moderate Resolution Imaging Spectroradiometer (MODIS) is the next

generation of spaceborne imaging spectrometers (Figure 2.20).  MODIS was designed to

be deployed aboard NASA’s Earth Observing System (EOS) spacecraft.  MODIS will be

the central instrument on board the spacecraft and is currently scheduled for launch in

1998 (Pagano and Durham, 1993).  MODIS will provide broad spectral coverage in the

0.4 µm to 14.0 µm region of the spectrum.  The spectral resolutions vary from 10 nm at

0.4 µm, to as much as 500 nm at 12.0 µm.  The spacecraft is expected to be launched in a

near-polar, sun-synchronous orbit at an altitude of 705 km.  Spatial resolutions at this high

altitude orbit will correspond to approximately 250 m, 500 m, and 1000 m from nadir.

The MODIS instrument is expected to be launched on several EOS spacecraft to

Figure 2.20.  MODIS Sensor (From Pagano, 1993)

provide scientists with needed information to understand the Earth-system in enough

detail to discern changes at a global scale.  The relatively large spatial resolutions will still
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provide sufficient dynamic range to permit the study of a wide range of land, ocean,

tropospheric, and stratospheric phenomena (Panano and Durham, 1993).

f.  Portable Hyperspectral Imager for Low Light Spectroscopy

    (PHILLS)

The Naval Research Laboratory’s (NRL’s) Portable Hyperspectral Imager

for Low Light Spectroscopy (PHILLS) system is one of the latest imaging spectrometer to

be put into operation.  PHILLS is designed to record radiance data in the 0.2 µm to 14

µm region in 250 to 1024 spectral bands, each with a nominal 0.5 nm to 3 nm bandwidth.

This broadband, high resolution capability is a powerful tool for resolving ambiguities in

composition and distribution of reflective and thermal energy emissions.  The sensor was

constructed entirely from commercial off-the-shelf components, resulting in a

comparatively low cost.  Its imaging modules use a flat field diffraction grating which

allows for the application of a spectral unmixing algorithm on raw data.  The system is has

no moving parts and is ruggedized for airborne operations.

The Optical Real-time Adaptive Signature Identification System (ORASIS)

is also integrated with the PHILLS system.  ORASIS is a data compression algorithm

designed to reduce the large data rate without significant degradation to the spectral

signatures.  This data compression algorithm provides unsupervised, real-time endmember

determination and spectral unmixing of the image scene without a priori information.  It is

capable of real-time processing because it uses a pattern recognition technique to identify

spectral signatures, vice the more statistic-intensive methods like Principle Components

Analysis.  Its non-statistical approach facilitates target recognition of objects that do not

occur frequently in the image and does not require a spectral library file of the

endmembers.  The algorithm produces an approximate list of endmembers that

characterize the materials in the image scene (Palmadesso et al., 1995).  The PHILLS/

ORASIS system is currently undergoing an operational evaluation onboard the Predator

Unmanned Aerial Vehicle (UAV) in support of U.S. forces deployed in Europe.
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4.  Development Summary

Table 2.1 summarizes the growth and change in multispectral, hyperspectral, and

ultraspectral imaging sensors over the last two decades.  The sensors are listed in order of

development and are shown here to enable the reader to compare their design

characteristics.

Sensor Bands Spectral
Range (µm)

Bandwidth
(nm)

Ground Sample
Distance (m)

LANDSAT
MSS

5 0.5-0.6
0.6-0.7
0.7-0.8
0.8-1.1
10.4-12.6

100 79

LANDSAT
TM

7 0.45-0.52
0.52-0.60
0.63-0.69
0.76-0.90
1.55-1.76
2.08-2.35
10.40-12.50

70 30

AIS I 128 1.2-2.4 9.3 11.4
AIS II 128 0.8-2.4 10.6 12.3
AVIRIS 224 0.4-2.5 10 20
MODIS 36 0.4-15.0 Varies 250,500,1000
PHILLS 250-1024 0.2-14.0 0.5-3 Varies

Table 2.1.  Characteristics of Multispectral, Hyperspectral and Ultraspectral Sensors

B.  EXPLOITATION SOFTWARE

Two primary software packages currently being used by the spectral imaging

industry were applied here: Spectral Image Processing System (SIPS) and Environment

for Visualizing Images (ENVI).  Both of these imaging packages run as applications under

the Interactive Data Language (IDL).  In addition, the HYDICE Starter Kit is an

extension of the SIPS image processing systems and incorporates an array of statistic-

oriented exploitation algorithms not available in SIPS (i.e., Orthogonal Subspace

Projection (OSP), Low Probability of Detection (LPD), and Constrained Energy

Minimization (CEM)).
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1.  Spectral Image Processing System (SIPS)

The Spectral Image Processing System (SIPS) software package was developed by

the Center for the Study of Earth from Space (CSES) at the University of Colorado, for

the purpose of analyzing spectrometer-derived image data.  The software was originally

designed to support only AVIRIS and High Resolution Imaging Spectrometer (HIRIS)

data sets, but had later proved itself extremely valuable in exploiting data sets from

LANDSAT and HYDICE.  SIPS was developed using the Interactive Data Language

(IDL) and provides a wide array of user-friendly spatial and spectral analysis techniques.

The SIPS software consists of three primary modules: SIPS View; SIPS Utilities; and

SIPS Analysis.  The SIPS View is an interactive image viewer that allows the user to

analyze a given data set spatially and spectrally through a windows environment.  Spectra

can be extracted, displayed, and manually or automatically examined real-time using

various on-line analytical tools.  The SIPS Utilities module provides a capability to extract

data from the storage tape, format it, to convert it from a radiance value to an apparent

surface reflectance.  The SIPS Analysis function is comprised of an array of programs that

facilitate complete analysis of the image cube.  The programs are extremely math-intensive

and require an inordinate amount of  CPU processing time.  Most of these programs are

not suited to real-time image processing or analysis (Kruse et al., 1993).  The HYDICE

Starter Kit was developed by HYMSMO program office to facilitate the use of SIPS, and

to incorporate additional algorithms.

2.  Environment for Visualizing Images (ENVI)

Environment for Visualizing Images (ENVI) is a highly sophisticated image

processing system designed to view and analyze various types of remote sensing data.

ENVI was also developed using IDL and incorporates an array of image processing

functions in one software package.  This commercial package is marketed by Research

Systems Inc.  Spectra extraction and processing functions are fully supported and

endmember selection is available in n-dimensional space, without limitations on the
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number of bands.  The software also includes a variety of functions that facilitate

processing of multi-frequency radar image data sets.  ENVI functions provide numerous

interactive processes that include a dynamic image display capability, histogram and

spectral library building, automatic and manual contrast stretching, profiling, spectra

extraction, image linking, and interactive scatter plot generation, to name a few.  These

analytical tools combine to provide an extremely powerful tool in which to analyze data

spatially and spectrally.  This software package was used extensively during the author’s

research and was found to be very user-friendly and remarkably versatile.

C.  SELECTED ALGORITHMS

This investigation required the use of each software package and implemented

three algorithms to obtain a per-pixel spectral response to describe the spectral

relationships in the scene.  These anomaly detection and classification algorithms include

the Principal Component Analysis (PCA), Low Probability of Detection (LPD), and

Spectral Angle Mapper (SAM).

1.  Principal Component Analysis (PCA)

The PCA method is a statistical technique that decorrelates the image bands by

projecting the data into a new space defined by the eigenvectors of the data covariance

matrix.  The purpose of the PCA technique is to examine the fundamental structure of the

data in order to estimate the intrinsic dimensionality of the image cube.  The transform can

be applied to raw data, calibrated radiance or apparent surface reflectance data sets.  The

PCA image consists of an array of n spectra (n < total number of image bands) at m

distinct wavelengths.  Experience has shown that as few as three eigenvalues can account

for over 90% of the total variance in a scene, reducing a large number of wavelengths to a

nominal three-parameter data set.  This reduces the inherent dimensionality of the data and

in principle eliminates the substantial redundancy in any given hypercube.  This technique

provides a basic understanding of the data properties, and can reduce the total volume of
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data viewed.  The principal component bands are oriented from highest to lowest

percentage of variance within the image scene (Richards, 1995).

2.  Low Probability of Detection (LPD)

The LPD method is a statistical-based scene-dependent anomaly detection

technique.  The LPD technique is a variant in the general class of Orthogonal Subspace

Projection (OSP) operators (Harsanyi and Chang, 1994).  This technique creates a

projection operator which contains the majority of the scene eigenvectors.  In practice,

this is done by means of a principal component transform, establishing the primary

eigenvectors which define the scene’s total variance.  (Fifteen eigenvectors were used in

the work shown here).  The OSP operator thus constructed, in combination with a known

target spectrum, can be used to estimate the target abundance in each pixel.  Theoretically,

most any spectrum not contained in the “background” eigenvector set will be brought out

with this technique  (Farrand and Harsanyi, 1995).

3.  Spectral Angle Mapper (SAM)

The SAM algorithm takes advantage of spectral similarities shared between an

endmember and each test pixel in the image cube.  This method is a statistical technique

that calculates the angle (Θ ) between the target and test spectra, with complete

indifference to their relative brightness values.  The SAM calculates the angle by treating

each spectra as a vector and applying equation 2.1:

Θ =  arccos
r r
r r
t r

t r
•
•













(2.1)

where r  is the endmember spectra, and t is each of the test spectra.  The algebraic result

represents the angular difference between the selected endmember and pixel spectra.

Figure 2.21 graphically illustrates how an endmember and test spectra are plotted in two
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Figure 2.21.  Two Spectra Plotted For Bands 1 and 2

dimensions with their values for band 1 and band 2.  The angle is measured in units of

radians and range from 0 to π/2.  Small spectral angles correspond to materials of high

similarity, and are displayed as brighter gray levels.  Larger angles indicate less similar

spectra, and are shown in darker gray levels.
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III.  MILITARY APPLICATIONS

A.  CLASSES OF APPLICATIONS

Military commanders must be prepared to operate at each of the three levels of

warfare - Strategic, Operational and Tactical.  The trend in ultraspectra, hyperspectral,

and multispectral imaging technologies is toward increased ability to discern an

adversary’s capabilities and possible intentions to support planning and operations at any

level.

1.  Strategic Level

Strategic intelligence relates to evaluated information used in the formation of

national and international strategy, policy, and military plans (U.S. Joint Chiefs of Staff,

1995).  At this level of warfare focus is placed on identifying an adversary’s capabilities

and intentions to support senior civilian and military decisionmakers.  Nationally oriented

imagery requirements are not considered time-sensitive and typically do not necessitate

high quality spatial resolution to be useful to the decisionmaker.  It is for these reasons

current multispectral imaging programs (i.e., the U.S. LANDSAT and the French SPOT --

Satellite Probatoire d’Observation de la Terre (Exploratory Satellite for Earth

Observation)) that provide broad-area coverage and moderate spatial resolution can have

a potential strategic applicability.  For example, LANDSAT and SPOT imagery can

provide information to assist governmental agencies in responding to natural disasters

such as floods, volcanic eruptions, and forest fires.  Figure 3.1 illustrates this capability by

comparing a true color image and a multispectral false-color image of an area burned near

Malibu, California in 1993.  The orange-red area in the bottom LANDSAT composite

(bands 7-4-2) image depicts the region most affected by the fire.
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Figure 3.1.  Malibu, California Fire Damage Assessment (From MUG, 1995)

2.  Operational Level

Operational intelligence relates to information required for planning and executing

major operations within a theater to accomplish the strategic objectives (U.S. Joint Chiefs

of Staff, 1995).  At this level of warfare focus is placed on the collection, identification,

location, and analysis of an adversary’s centers of gravity.  Operationally oriented
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requirements necessitate a detailed analysis of information to identify critical

vulnerabilities, and to assist the commander in making decisions concerning the optimal

use of force.  For instance, LANDSAT and SPOT satellite images provided U.S. Navy

planners with information on the water depths off the coast of Kuwait prior to the Persian

Gulf War.  This information was fully integrated into the planning of the intended U.S.

amphibious operations.  Figure 3.2 illustrates this capability for the waters near Bandar

Abbas, Iran.  The light blue color indicates shallow water areas and the dark blue shows

the deeper regions.

Figure 3.2.  Bathymetry Image of Bandar Abbas, Iran (From MUG, 1995)

3.  Tactical Level

Tactical level information is required for the planning and execution of tactical

operations at the component level (U.S. Joint Chiefs of Staff, 1995).  Tactical intelligence

is oriented towards discerning the capabilities and immediate intentions of a potential

adversary.  Figures 3.3 and 3.4 illustrate a tactical application of spectral imaging
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Figure 3.3.  True Color Image of a Military Vehicle (From MUG, 1995)

Figure 3.4.  Multispectral Image of a Military Vehicle (From MUG, 1995)
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by comparing the discrimination capability of panchromatic and multispectral images.  In

Figure 3.3, for example, the vehicle does not standout against the surrounding

background.  The opposite of which is true for the multispectral composite image (Figure

3.4).

B.  TACTICAL UTILITY

More than at any other level, U.S. warfighting capability is predicated on the

timely delivery of processed image data to the tactical commander.  Marshall [1994]

quotes General Norman Schwarzkopf, commander of the coalition forces during the war,

as commenting to the Senate Armed Services Committee on the shortfalls of U.S. tactical

reconnaissance capabilities:

One of the shortcomings we found is that we just don’t have an immediate

responsive intelligence capability that will give the theater commander

near-real-time information that he personally needs to make a decision.

The rigorous pace and intensity of present-day combat operations has caused the

military to seek out new, highly sophisticated reconnaissance, surveillance, and target

acquisition technologies.  Today’s U.S. precision guided munitions require timely,

detailed, accurate targeting information for optimal employment.  Some recent successes

in the area of hyperspectral research have provided significant advances in improving our

ability to view the battlefield.

1.  Gulf War Problem

One of the more vexing problems our military leaders faced during the Persian

Gulf War was the detection and destruction of Iraq’s mobile SCUD launcher inventory.

Figures 3.5 and 3.6 are photographs of a Transportable Erector Launcher (TEL) and its

associated SCUD ballistic missile.  The majority of the missiles were fired from pre-

surveyed launch positions located in west and southwest Iraq - an area spanning
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Figure 3.5.  Mobile TEL and SCUD Missile  (Courtesy of TRW, 1995)

Figure 3.6.  Mobile TEL and SCUD Missile - Front View (Courtesy of TRW, 1995)
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thousands of square miles.  These launch sites were typically located in rugged terrain

where SCUD crews could easily conceal themselves before and after a launch.  Typically,

launch crews would seek cover from coalition reconnaissance assets by hiding under

camouflage netting or in ravines and coverts.  SCUD suppression efforts were a high

priority mission throughout the conflict.  As more intelligence resources were brought to

bear on the SCUD problem, analysts were able to reconnoiter some suspected operating

areas.  Most of these search areas were extremely large so target detection remained a

daunting challenge.  Initial counter-SCUD efforts were regarded as successful, but post-

war reports have cast doubt on the actual number of missiles destroyed.  It’s been

suggested that some of the missiles reportedly destroyed may have been large trucks or

decoys constructed of a hollow cardboard material.

2.  Lessons Learned

Lessons learned from this experience tells us that future tactical reconnaissance

and surveillance systems must be in sync with the operation.  A firm link between the

mission and the supporting system needs to be established if intelligence is to be

responsive to the situation.  An imperative to the SCUD problem is the timely detection

and destruction of the TEL.  Figures 3.7 and 3.8 compare the ability of panchromatic and

hyperspectral images to detect the presence of a SCUD system in a natural desert

environment.  While the SCUD is not easily discernible in the panchromatic image, it is

clearly noticeable in the spectral composite image.  A TEL can travel approximately nine

miles in any direction within fifteen minutes after firing.  This localization problem was

further exacerbated by our inability to quickly re-orient national-level imagery assets upon

demand.  The lack of tactical control over these assets hindered our ability to respond to

the problem at the speed and detail required.  Theater-level assets like the U2

reconnaissance aircraft was also deployed in response to the detection problem, but it

lacked the level of tactical reporting capability needed.  Military planners require an

intelligence architecture that will enable TEL destruction within 10 minutes of detection,
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Figure 3.7.  True Color Image of a TEL and SCUD Missile (Courtesy of  TRW, 1995)

Figure 3.8.  Hyperspectral Image of a TEL and SCUD Missile (Courtesy of TRW, 1995)
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and targeting accuracy is essential.  One of the most important lessons learned from the

was the operational need for a family of UAVs to attack the problem.

3.  Current and Future Capabilities

One of the primary challenges the HYMSMO program faces is providing timely

support to the warfighter using a technology that was not specifically designed to satisfy

tactical requirements.  The technology validation phase of the program is well underway,

and early findings show the technology to be very versatile.  Recent findings indicate that a

future capability to autonomously detect and geolocate military relevant tactical targets in

various types of background clutter in near-real-time is feasible.

a.  Application Examples

A major advantage of hyperspectral imagery data is the capability to record

reflected solar energy beyond the visible portion of the spectrum.  A quantitative measure

of its military benefits can be found by examining the spectral signatures of camouflage

materials relative to a natural vegetative background.  Figure 3.9 is an

Figure 3.9.  U.S. and Russian, Camouflage and Green Vegetation (From MUG, 1995)
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example of how hyperspectral imagery can defeat U.S. and Russian woodland camouflage

netting deployed in a healthy green vegetative environment.  Camouflage is

considered to be a form of concealment created through artificial means.  Its purpose is to

break up the outline of an object and make it indistinguishable from the background

environment.  In the visible region of the spectrum the camouflage netting and healthy

green vegetation are almost identical.  In the NIR and SWIR regions, however, the spectra

of the man-made materials and natural vegetation differ dramatically.  Figures 3.10 and

3.11 are 5 m GSD panchromatic and multispectral images of five camouflaged objects.

Note that the camouflaged objects are easily detected in the multispectral image, shown

here in red, but are not as obvious in the true color image.

Figure 3.10.  Panchromatic Image of Camouflage Netting (From MUG, 1995)
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Figure 3.11.  Multispectral Color Image of Camouflage Netting (From MUG, 1995)

Hyperspectral data is also sensitive to changes in the moisture content of

soil and natural vegetation.  The changes can be used to detect stress caused by lack of

water, disease, or disturbances caused to the terrain.  When a vehicle traverses over soil,

sand, or grass, the terrain is disturbed.  Depending on the type and condition of the soil

and foliage, both mechanical damage to the plants and the overturning of the underlying

soil will contribute to the spectral signature.  Figure 3.12 compares the spectra of stressed,

severely stressed, and healthy vegetation samples.  The detection of stressed vegetation

and disturbed earth can provide evidence of a potential adversary’s movement, and give

insight to their intentions.  Other military examples of stressed plant life are that cut

vegetation is sometimes used to conceal tactical vehicles, and stresses caused by

disturbances to the ground can be an indication of sub-terrestrial construction.



44

Figure 3.12.  Severely Stresses, Stressed, and Healthy Vegetation (From MUG, 1995)

There are a number of hyperspectral applications which support military operations

being used today.  These additional applications provide a representative

example of several military related uses of ultraspectral, hyperspectral, and multispectral

image data sets.  Below is a list (not all inclusive) of these potential applications:

•  Target/Decoy Discrimination •  Mission Planning

•   Change Detection •  Perspective Views

•   Bathymetry •  Terrain Categorization

• Image Map Supplements •  Disaster Assessment and Relief

    Assistance

b.  Cross-Cueing

Autonomous cueing is the passing of detection, geolocation, and targeting

information to another sensor or target acquisition system without a human interface.  For

cross-cueing to be effective, each sensor must be able to autonomously alert another
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sensor to the presence of a target of interest.  Each sensor needs to leverage from the

other sensor’s unique strengths to provide economy of effort and to enhance the overall

system’s detection capability (Marshall, 1994).  By incorporating more than one sensor

into a single reconnaissance platform we can exploit the individual strengths of a sensor

while minimizing its weaknesses.  For example, consider an airborne collection platform

carrying both a Signals Intelligence (SIGINT) system and a panchromatic imaging sensor.

A SIGINT system can provide timely indications and warnings (I&W) information over a

broad geographic region, but can give only rough locating data until multiple intercepts

can be gained.  An imagery system can provide very accurate geolocating data, but is

typically limited to a small geographic area.  By working in concert the SIGINT system

can pass rough geolocating data to the imager so the optics can be trained to the specific

area of interest.  The addition of a hyperspectral system (with automated procedures like

ORASIS) can provide a spectral dimension to the overall system to increase the detection

and identification capability of the system.

c.  Automatic Target Recognition

One of the key components to be used on future hyperspectral systems is

an automatic target recognition system.  Extensive research is being conducted on the use

of automatic target detection and identification techniques to reduce the analyst’s work-

load and increase target detection speed.  At present, however, automated target detection

capabilities are restricted to the research and development arena and have only recently

been employed in operational practice.  The goal here is to remove the human from the

process of target recognition, while increasing the performance of the functions to real-

time.  Automation is desirable because most systems that have a human element in the

loop are generally slow and potentially unreliable in dealing with real world problems.

The military relevant target sets currently being evaluated consist of tanks, TELs, trucks,

armored personnel carriers, etc.  This ability to automatically process raw hyperspectral

data also has the potential for reducing the amount of data transmitted to the tactical
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commander, thus improving upon the timeliness of the information.  At this stage of

development it remains unclear if current data transmission capabilities will support wide

area surveillance.

d.  Tactical Support Platform

The best quantitative measures for assessing the tactical utility of

hyperspectral imagery is timeliness.  One of variables affecting the timeliness of remote

sensing imagery is product delivery time.  The image delivery time refers to the time it

takes to collect, exploit, and deliver finished imagery to the tactical commander.

Collection timeliness is directly correlated to the revisit frequency of the collector.  The

more frequent the revisit time the faster the information can be provided to the warfighter.

The revisit frequency of current multispectral satellite systems to over-fly the same point

on the earth can take upwards of days.  The actual delivery time of the final imagery

product can take nearly a week.  During Desert Storm, for example, LANDSAT images

were delivered to the theater commander between five and twelve days after a request was

submitted (U.S. Joint Chiefs of Staff, 1995).

Technological advances in UAVs presents an attractive alternative to the

space-based reconnaissance and surveillance assets.  The Medium Altitude Endurance

(MAE) UAVs can give near-continuous, on-demand situational awareness of the

battlefield.  The MAE UAV is designed to provide a long range, extended dwell capability

to satisfy the reconnaissance and surveillance mission requirements.  The Predator vehicle

has demonstrated an endurance of 40+ hours and currently has a Ku-band data link for

SATCOM operations.  UAV payloads currently include electro-optical (EO) and infrared

(IR) imagers, foliage penetrating radars, communications links, and support only limited

onboard processing capabilities.  There is an  initiative underway to optimize the Predator

MAE UAV to carry a variety of advanced sensor suites.  The Predator program is

presently evaluating technologies such as the PHILLS ultraspectral sensor, SIGINT and
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LASER designator/ranging systems, and advanced communications packages for future

deployments.  Figure 3.13 illustrates the Predator’s concept of operations.

Figure 3.13.  UAV Concept of Operation (From Unmanned Aerial Vehicles, 1995)
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IV.  EXPERIMENT DESCRIPTION

A.  GENERAL METHODOLOGY

The HYMSMO program office is conducting a series of applied remote sensing

experiments during FY-94 through FY-98 designed to demonstrate the capability of

hyperspectral spectrometers and exploitation techniques to satisfy time-sensitive

intelligence requirements.  To that end, collection and exploitation experiments are

designed to examine the physics and phenomenology of various military target classes

under different environmental conditions.

1.  Levels of Information (LOI)

These time-sensitive SMO requirements, termed “Levels of Information” (LOIs),

were identified through a Defense Intelligence Agency (DIA) sponsored survey known as

Assured Support to Operational Commanders (ASOC).   LOIs evaluated with respect to

the Forest Radiance collection and exploitation experiment are comparable to those

requirement levied on other types of intelligence gathering platforms.  These vetted SMO

requirements include spectral characterization (CH), detection (DE), geolocation (GE),

classifying (CL), discriminating (DI), identifying material (MI), and quantifying materials

(QM) of mobile and fixed objects and decoys in progressive states on concealment.

Spectral Taggants (TG) is another LOI category (not originally identified in the survey)

being examined to determine if a spectrally tagged target object can be discriminated from

an object that has not had the material applied to it (Anderson, 1995).

2.  Guidance

HYMSMO experiments leverage from existing spectroradiometric programs and

data sets in order to assist designers in maximizing collection opportunities and defining

their objectives.  The following experimental objectives were defined for FY-95 program:
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• “Design experiments that address high priority Levels of Information (LOIs)

which provide a technical basis for the HYMSMO collection and exploitation

program;

• Refine ground- and sea-truth protocols to support HYMSMO experiments;

• Understand airborne sensor characteristics and performance requirements

 relative to military targets and backgrounds;

•    Exercise and improve non-linear exploitation algorithms, models, software,

techniques, and measures of effectiveness (MOEs) for utility assessments;

•    Develop error propagation techniques to design experiments and predict

performance; and

• Quantify and demonstrate the potential military utility of hyperspectral imagery

data in support of time-sensitive military operations, as well as critical

intelligence applications.” (Anderson, 1995)

B.  OPERATION FOREST RADIANCE I

Operation Forest Radiance I was the third in a series of HYMSMO program-

sponsored collection and exploitation experiments.  The intent was to expand upon the

knowledge and experience gained from the Desert Radiance I and II experiments,

conducted in CY-94 and CY-95.  As their names suggest, Forest Radiance I was

conducted in a woodland environment, whereas the Desert Radiance experiments were

conducted in a desert setting.

1.  Background

The Desert Radiance I experiment was conducted in October, 1994, at the U.S.

Army’s White Sands Missile Range in New Mexico (NM).  This operation placed its

highest priority on examining completely exposed mobile objects, with subsidiary emphasis

on fixed objects and geographic features.  The Desert Radiance II experiment was

conducted in June, 1995, at the U.S. Army’s Yuma Proving Grounds in Arizona (AZ).
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Here, fully exposed mobile and fixed objects were examined, but research was expanded

to include the analyses of camouflage, concealment, deception, and spectral taggants.  The

Forest Radiance I experiment was conducted in August, 1995, at the U.S. Army’s

Aberdeen Proving Grounds in Maryland (MD).  The intent here was not only to emphasize

the spectral analyses of these same target classes, but to expand the scope to explore

progressive states of concealment (exposed, shadowed, concealed) and camouflage

conditions.  The Forest Radiance I operation was the program’s first attempt at examining

the non-linear effects caused by shadow and natural canopies.

2.  Airborne Data Collection Objectives

The Forest Radiance I tests were staged exclusively at the Aberdeen Proving

Ground’s H-Field from 17 to 31 August 1995.  The H-Field range proved to be an ideal

physical environment to satisfy all of the experiment’s priority LOIs.  Other targets of

opportunity were available at the range included the U.S. Army Tank Museum and a

hazardous waste disposal area (Superfund Site); however, overflights of the Superfund

target was removed from the collection plan due to the safety concerns expresses by the

H-Field Control Center.  Prior to executing the plan, collection guidance and direction

was promulgated via the Forest Radiance I Collection and Exploitation Operations Plan

(CEOP-3).  Secondary collection efforts were conducted against urban areas in

Washington, D.C. (U.S. Capital Building) and Baltimore, Maryland (3 sites).  The

Washington D.C. area provided the necessary data to examine the rich material diversity

of an urban environment.  The Baltimore site provided a waterfront setting, in addition to

urban data, to further explore material identification and spectral tagging techniques.  For

additional information concerning this portion of the experiment, refer to URBAN

RADIANCE I CEOP-5.  As a complement to these spectrometer overflights, national-

level collection assets were also tasked to support the experiment’s objectives.
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3.  H-Field Site Description

The H-Field Range is located on Edgewood Peninsula approximately 20 miles

northeast of Baltimore, MD.  The H-Field setting provided three distinct environments in

which to deploy the target arrays: 1) a large open field, to deploy a total of 77 completely

expose military vehicles and target panels; 2) a road adjacent to both the field and wooded

treeline, to ease target re-deployment and facilitate exploring the non-linear effect due to

shadow; and 3) a woodland forest, to evaluate the effects caused by partially concealed

objects under canopy.  Figure 4.1 shows the location of the Aberdeen Proving Ground’s

H-Field Range.  Figure 4.2 shows the flight-path used by the aircraft, which

Figure 4.1.  Edgewood Peninsula  (From Anderson, 1995)
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Figure 4.2.  Forest Radiance I Flight Lines (From Anderson, 1995)

consisted of a 20 mile ingress/egress and 3 mile of target array.  This figure also shows the

flight-line for other target areas at the Aberdeen Museum (canceled) and Superfund Site

(canceled).

4.  Experiment Design

The H-Field site was specifically selected to provide a realistic forest environment

to satisfy five priority LOIs identified for exploitation (e.g., spectral characterization,

material identification, subliteral detection, time quantification, and spectral taggants).  H-

Field was ideally suited to this experiment because both mobile and fixed objects could be

deployed in exposed, shadowed, and canopy areas at a single location.  The experiment

was executed in three separate phases, each employing a progressive state of concealment.

The first phase, Phase I, emphasized a suite of overtly exposed vehicles, decoys, and

target panels.  In Phase II, the observables were re-deployed to the shadowed area

adjacent to the treeline.  In Phase III, the objects were again re-deployed under canopy for
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partial concealment.  The target classes and site configurations for each phase are listed in

Table 4.1, and are discussed in detail in the ensuing sections.  Throughout the experiment

target spectra, illumination effects, and atmospheric depth were evaluated at three

altitudes (5,000, 10,000, and 20,000 ft) and varying sun angles (mid-morning, local noon,

mid-afternoon).  Varying the overflight altitudes provided a range of subpixel and

multipixel data sets, which were comprised of a mixture of target and background material

radiance spectra.

Target Type Site Configuration Phase
Material Panels Exposed w/uniform background

Partial shadow w/variable background
Partial to full concealment w/forest canopy

I
II
III

Vehicles / Decoys Exposed w/uniform background
Partial shadow w/variable background
Partial to full concealment w/forest canopy

I
II
III

Camouflage Defeat Camouflage with / without vehicles
Reference materials under camouflage

I
II

Calibration Panels Exposed w/uniform background I, II, III
Downed Pilot Parachutes in trees

Downed pilot simulation
I, II, III
I

Stressed Vegetation Tank track w/uniform high grass I, II

Table 4.1.  Forest Radiance I Experiment Summary (From Anderson, 1995)

a.  Target Objects

A variety of reflectance calibration targets were deployed to aid radiance

calibration to apparent surface reflectance.  These calibration panels, summarized in Table

4.2, provided a spectrally near-homogeneous medium in which a baseline spectral library

could be established.  This spectral database also provided a useful reference for the non-

linear exploitation techniques explored during Phases II and III.  Tables 4.3 through 4.5

summarize the target materials used during Phase I of the experiment.  The spectral

signatures extracted from these overtly exposed target objects were also used to exploit

the data sets from Phases II and III.  Tables 4.6 and 4.7 describe the vehicle, decoy, and

camouflage target arrays deployed during all three of the phases.  Using both
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Target ID Size meter
(m)

Description

 R1   9.1 X 9.1 2% reflectance
     R2     “        “ 4%        “

 R3     “        “ 8%        “
 R4     “        “ 16%      “
 R5     “        “ 32%      “
 R6     “        “ 64%      “
 S1     “        “ Type 1 spectral reflectance, 48% gray R5

     S2     “        “ Type 3 spectral reflectance, 100% cotton
 S3 5.2 X 15.2 Type 4 spectral reflectance, green fabric

w/polyethylene overlay

Table 4.2.  Calibration Panels (From Anderson, 1995)

Target
ID

Size (m) Description

   F2a
   F2b
   F2c

   3 X 3
   2 X 2
   1 X 1

Desert BDU
     “        “
     “        “

   F3a
   F3b
   F3c

   3 X 3
   2 X 2
   1 X 1

Cotton (green)
     “        “
     “        “

   F4a
   F4b
   F4c

   3 X 3
   2 X 2
   1 X 1

Nylon (green)
     “        “
     “        “

   F5a
   F5b
   F5c

   3 X 3
   2 X 2
   1 X 1

Cotton / Nylon (green)
     “        “
     “        “

   F11a
   F11b
   F11c

   3 X 3
   2 X 2
   1 X 1

Green Tenting
     “        “
     “        “

   F12a
   F12b
   F12c

   3 X 3
   2 X 2
   1 X 1

Nomex Kevlar Camouflage
     “          “               “
     “          “               “

   F13a
   F13b
   F13c

   3 X 3
   2 X 2
   1 X 1

Light Green Parachute
     “        “           “
     “        “           “

   F14a
   F14b
   F14c

   3 X 3
   2 X 2
   1 X 1

Dark Green Parachute
     “        “           “
     “        “           “

Table 4.3.  Fabric Materials (From Anderson, 1995)
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Target ID Size (m) Description
F6 2.75 X 2.75 Tan Vinyl
F7 2.75 X 2.75 Rust Plastic
F8 2.75 X 2.75 Tan Fiberglass
P2 2.4 X 2.4 Brown CARC Paint on Aluminum
P3 2.4 X 2.4 Tan CARC Paint on Aluminum
P5 2.4 X 2.4 Green CARC Paint on Aluminum

Table 4.4.  Plastic and Painted Metals (From Anderson, 1995)

Target ID Size (m) Description
T1a
T1b
T1c

3 X 3
2 X 2
1 X 1

Spectral taggant on green fabric
      “           “              “        “
      “           “              “        “

T2a
T2b
T2c

3 X 3
2 X 2
1 X 1

T1 reference fabric w/o taggant
  “        “            “       “        “
  “        “            “       “        “

T3/V6 1 X 2 Spectral taggant applied to the bed of
HMMWV (V6)

Table 4.5.  Spectrally Tagged Targets (From Anderson, 1995)

Target ID Size (m) Description
VF1
VF2
VF3
VF4

4 X 8
    “
    “
    “

T72 Tank, woodland
           “             “
           “             “
           “             “

VF5
VF6
VF7

3 X 6
    “
    “

BTR 60, APC, woodland
BTR 70,     “            “
BTR 80,     “            “

V1
V2
V3
V4

4 X 8
    “
    “
    “

M1 U.S. Tank, woodland
      “           “             “
      “           “             “
      “           “             “

V5
V6
V7

3 X 6
    “
    “

HMMWV, woodland
      “                   “
      “                   “

Table 4.6.  Mobile Vehicle Targets (From Anderson, 1995)

similar and different vehicle types, spectral discrimination between the same target type

and between different vehicle classes can be evaluated.  A spectral taggant was also
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applied to three green fabric panels and one HMMWV, in order to determine its spectral

enhancement properties.

Target ID Description
DV1 M1, 2-D aerial, woodland
DV3 HMMWV, inflatable, woodland
DV4 HMMWV, inflatable, desert
C3 U.S. woodland camouflage, ULCANS radar scattering
C5 U.S. woodland camouflage, ULCANS radar scattering
C6 U.S. woodland summer camouflage, radar scattering open weave

Table 4.7.  Decoys and Camouflage Targets (From Anderson, 1995)

b.  Phase I - Exposed Material and Vehicle Experiments

The first phase of the experiment was conducted from 24-25 August.  It

emphasized the collection of hyperspectral signature data from unobstructed target panels,

military vehicles and decoys, and camouflage netting.   All of the target objects were

deployed in the configuration shown in Figures 4.3 and 4.4.  The fully exposed

Figure 4.3.  Forest Radiance I Exposed Target Array (From Anderson, 1995)
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Figure 4.4.  Forest Radiance I Exposed Target Array (From Anderson, 1995)

test area provided a uniform energy distribution on the target array, thus yielding

quantitative surface condition results.  This test area also provided a near-uniform grass

background which enhanced the spectral contrasted between the military relevant targets

and the natural vegetative background.  Two inflatable HMMWV decoys were also

deployed in a fashion similar to that of the HMMWV.  The primary thrust of the work

presented here centers on discerning any spectral seperability between the real HMMWVs

and their decoys.

c.  Phase II - Shadow and Adjacency Experiments

Phase II of the experiment was conducted on 26 August.  It primarily

addressed the complexity of collecting and analyzing hyperspectral signature data in a

shadow environment.  This phenomenon was explored by repositioning several targets to

the shadowed region adjacent to the treeline, resulting in a decrease in illumination effects.

These non-linear effects are attributed to changes in light quality (lack of direct sun or

reflected sky light), which make target detection and spectral characterization exceedingly
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more difficult.  An array of  three target panels were also positioned  perpendicular to the

shadowed objects in order to compare the panel reflectance in the exposed experiment to

those influenced by adjacency effects.  This low-illumination experiment represented the

first of two phases in which the target concealment states increased using natural cover.

The semi-exposed targets in Phase II likely received some reflected energy from the

adjacent foliage, while Phase III of the experiment provided an even more challenging

environment.

d.  Phase III - Concealed Vehicle Experiments

Phase III was conducted on 29 August.  This phase emphasized the

detection and spectral characterization of targets in a dense forest environment.  Figure

4.5 illustrates how the Sun’s radiant energy first passes through breaks in the canopy

before reflecting off the target objects and ascends towards the overhead sensor through a

different opening.

Figure 4.5.  Canopy Geometry for Concealed Targets (From Anderson, 1995)

To simulated more realistic conditions, several of the target objects were repositioned to

the heavy foliated area to study the non-linear effects due to canopy.  This condition
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provided only limited direct sun or reflected sky light, thereby reducing target illumination

by a significant amount.  A series of target configurations were employed to only partially

conceal the target, and complete target obscuration was avoided.  The target array was

specifically designed and positioned to develop linear unmixing algorithms used to

quantify the fraction of concealment.  No actual or decoy HMMWVs were deployed in

this phase of the experiment.

5.  Ground-Truth Measurements

Each experiment included a dedicated “ground-truth” collection program.  The

U.S. Army Topographic Engineering Center (TEC), Ft. Belvore, VA, provided all

ground-truth measurements in support of the Forest Radiance I experiment.  This survey

was conducted to minimize the complexities associated with natural surfaces, and to

mitigate the atmospheric effects and spectral signature ambiguities that tend to limit

hyperspectral imaging.  The ground-truth measurements provided a means in which the

true surface reflectance of a material can be related to the reflected radiance values

observed at the sensor.  This activity is necessary so that an apparent reflectance data set

can be derived.  This apparent surface reflectance is calculated by measuring atmospheric

conditions, like spectral transmittance and scattering, and removing them from the image

scene.

The total radiance (LT) reaching the focal plane of the sensor is comprised of

reflected surface radiance (LSR), thermal surface radiance (LSE), scattered atmospheric

radiance (LSC), and background reflected radiance (LBS).  These values are described

algebraically in equations 4.1 and 4.2:

LT = LSR + LSE + LSC + LBS (4.1)

LSR = (E cos Φ ) * LD * R * LU                (4.2)
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where E is solar irradiance, Φ  is solar zenith angle, LD is downward transmittance, R is

surface reflectance, LU is upwards transmittance, and LSE = 0.

TEC ground-truth teams collected over 400 in situ spectral signatures using a

GER Field Spectrometer.  The measurements of the target panels and vehicles were

collected from an average height of 1 m, while the larger camouflage materials were

sampled using a truck mounted mechanical boom.  The reflectance data was collected in

the 0.35 - 2.5 µm range and their values calculated relative to the Spectalon 99%

reflectance standard.  Simple target objects were measured at least three times, while more

complex materials like camouflage netting were measured several times.  The signature

data was recorded by a portable personal computer used to operate the spectrometer.  The

data was later down-loaded to a DOS formatted 3.5” diskette for dissemination to the

exploitation teams (Anderson, 1995).

6.  Sensor Characteristics

The Forest Radiance I experiment employed both remote sensing spectroscopic

and imaging functions into a single integrated sensor.  Therefore, considerable effort was

made to select an advanced imaging spectrometer that addressed several long-standing

limitations inherent to imaging spectroscopy (i.e., sensitivity and calibration accuracy,

signal-to-noise ratio, spatial and spectral resolutions, number of spectral bands, and ability

to process large amounts of data).  The Hyperspectral Digital Imagery Collection

Experiment (HYDICE) and Airborne Remote Earth Sensor (ARES), two high quality

state-of-the-art spectroradiometers, were selected to correct for these deficiencies and to

make the wide range of spectral measurements designed into the experiment.

a.  Hyperspectral Digital Imagery Collection Experiment (HYDICE)

 The HYDICE sensor was designed and developed by Hughes-Danbury

Optical Systems, Inc., to provide high quality hyperspectral data to explore literal and

nonliteral exploitation techniques for a wide variety of military and civil applications.
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Figure 4.6 shows the HYDICE instrument.  The sensor is fully integrated onboard a

Environmental Research Institute of Michigan (ERIM) Convair (CV-580) aircraft and

operates in accordance with HYPO tasking.  The sensor is a nadir-viewing, 210 channel

imaging spectrometer covering a spectral range form 0.4 µm to 2.5 µm; visible through

Figure 4.6.  HYDICE Instrument (From Anderson, 1995)

the SWIR domain.  The spectrum is sampled contiguously in 10 nm wide channels using a

pushbroom technique.  Light enters the sensor perpendicular to the flight path, and is then

dispersed by a prism onto a single array detector.  The sensor covers a swath width of

approximately 1 km and provides a GSD ranging from 0.75 to 3 m, depending on its

operating altitude.  Table 4.8 summarizes the HYDICE sensor’s characteristics.
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System Attribute Specification
Platform ERIM CV-580
Sensor system operating altitude 2,000 - 7,500 m; 6,000 m (design point)
Aircraft operating altitude Sea level - 7,500 m (25,000 ft)
V/H (aircraft limits) 0.0127 - 0.059 rad/sec
Optics Paul Baker foreoptics

Schmidt prism spectrometer
Aperture diameter 27 mm
System f/number 3.0
Swath FOV 8.94°
Swath width 208 pixels
IFOV 0,507 mrad (average)
Array size 320 X 210 pixels
Integrated modes Simultaneous & continuous
Integration time 10.5 msec (design point)

1.0 - 42.3 msec (range)
Frame time 17.3 msec (design point)

8.3 - 50 msec (range)
Readout time; Quantization 7.3 msec (fixed); 12 bits
Spectral co-registration (smile) 5% of FWHM (average)
Spatial co-registration 55 µrad at edge of field (average)
Channel width  (FWHM) 7.6 - 16 NM
Instrument operating temperature 10 °C
MTF (laboratory) > 0.58 in-track

> 0.33 cross-track
InSb focal plane in three regions A  .40 - 1.0 µm

B  1.0 - 1.9 µm
C  1.9 - 2.5 µm

Average SNR (by gain region) 217/107/40 @ 5% reflectance
Average dynamic range (by gain region) 955/54/17 watts per m2/steradian/micron
Polarization < 4% above 445 NM

< 12% below 445 NM
Pixel size 40 X 40
Spectral transmission @ m 1 FWHM
                                   @ m 2 FWHM
                                   @ m 4 FWHM

3 - 13%
0.1 - 1.2%
0.02 - 0.6%

Table 4.8.  HYDICE Sensor Characteristics (From Anderson, 1995)

b.  Airborne Remote Earth Sensor (ARES)

The Airborne Remote Earth Sensor (ARES) system is a high altitude

imaging spectrometer mounted onboard a WB-57-F aircraft.  The aircraft nominally

operates at an altitude of approximately 60,000 ft, at speeds ranging from 120 to 400 kts.



64

The sensor is a nadir-viewing, 75 band spectrometer with a MWIR spectral range of  2.0

µm to 6.3 µm.  The sensor operates using a mechanical sweeping, or scanning motion, and

provides a nominal GSD of 20 m, depending on the altitude of the aircraft (Anderson,

1995).  The spectral range of this instrument’s data set is beyond the scope of this thesis.

ARES characteristics are summarized in Table 4.9.

System Attribute Specification
Platform NASA WB-57F
Aircraft operating altitude Sea level - 18,900 m (62,000 ft)
Optics Dual Mode MWIR 2-D Scanning Imaging

Spectrometer
-- Afocal Reflective Slit Spectrometer
    Telescope
-- 2-Element Ge-MgO Prism Assembly

Aperture diameter 50 mm
Focal length 95 mm
Swath FOV 3.0 X 3.0 degree scan & sweep
Swath width 45 pixels
IFOV 1.17 mrad (Spatial), 360 mrad (Slit)
Array size 45 X 90 pixels
Integration time 1-80 Hz selectable
Quantization 12-bit A/D Conversion
Detector Pitch 100 µm
Spectral Coverage 2.0 - 6.3 µm
Spectral Range 2.0 - 7.0 µm
Spectral Resolution 25 - 70 nm
Instrument operating temperature Internal Optics 77°K, Detector 24°K

Si:IN focal plane array
BP Filters: none, 2.21-2.26, 2.71-2.97,
3.72-3.84, 4.41-4.56 µm
ND Filters: none, 0.34, 0.0, 0.01, 0.001

Noise <0.001 X Mean FPA Illum Level
Sensitivity 1.0 µW per cm2/steradian/micron
Video Track Sources Wide & Narrow Field TV Cameras

PtSi short-wave-infrared Camera
Pointing Range m 90° in roll, 30° fwd, 20°aft in pitch
Scanning Mirror Sweep Slit Projection Across Target Range

m 1.5°, rate 0-6.0°/sec

Table 4.9.  ARES Sensor Characteristics (From Anderson, 1995)
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7.  Ground Data Processing Subsystem (GDPS)

The Ground Data Processing Subsystem (GDPS) is physically located at the

HYPO.  The hardware configuration used to process large volumes of raw hyperspectral

data consists of a Sun SPARC 2 630MP deskside server, 2 Gbytes of internal disk space,

2 8mm external disk drives, 1 AMPEX tape recorder, and a high quality laser printer.  The

AMPEX tape recorder is identical to the aircraft’s “record only” device, but includes an

additional playback feature to access the recorded data.  The data is recorded onto the

AMPEX tape during flight and stored in a binary format.  The image data is collected and

saved in minor frames (320 cross-track pixels by 210 bands) for the duration of the

overflight.  These minor frames are grouped into major frames (320 minor frames) and are

preceded by a header block for quick identification.  The function of the GDPS is to

review data tapes from the aircraft, extract select portions of the data sets, convert the

brightness values (DN) recorded by the sensor to radiance values, and then distribute the

image data via 8mm tape to the exploitation teams for analysis.  Analytical functions are

carried out on an identical hardware configuration (less tape recorder).  Final output

images and spectral plots are transferred to a personal computer for annotation and

document insertion (Kappus et al., 1996).
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V.  OBSERVATIONS AND ANALYSES

A.  TECHNICAL OBJECTIVE

The H-Field range was divided into separate target areas to maximize probability

of success for each individual mini-experiment.  To satisfy the broad range of objectives, a

wide array of target objects of varying shapes, sizes, and material types were deployed in

different orientations throughout the test area.  The primary objective of this report is to

ascertain the utility of hyperspectral data and exploitation techniques to detect and

discriminate the spectral signatures of exposed mobile vehicles (HMMWVs) and decoys,

against the natural grass background.  A thorough examination of the spectral variability

inherent in these objects and on-line target and anomaly detection methods (i.e., PCA,

LPD, and SAM) was conducted.  This report defines an anomaly as a target of military

interest.

B.  DATA PROCESSING

In-flight processing and calibration to apparent reflectance has not met with a

significant amount of success and is assessed as impractical in application.  Post-flight data

preparation, however, can be accomplished through a series of iterative steps with minimal

effort.  Here is how the Forest Radiance I data sets were obtained.

1.  Post-Flight Processing

The first step is to create a “table of contents” which delineates the tape’s contents

relative to the data’s location on the tape.  The second step involves the extraction of a

“quick look image” from the tape to assess the quality of the data collected during each of

the runs.  This evaluation is accomplished by a cursory review of the coverage area, image

content, instrument artifacts, and distortions attributed to aircraft movement (pitch, yaw,

etc.).  This step also provides information necessary to determine the major frames of an

image scene, which allows for quick access of only those data segments of interest.  The
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final step involves converting the data from instrument DN to a calibrated radiance levels.

More detailed information concerning the radiometric calibration technique can be found

in Aldrich et al., [1995].

 2.  Reflectance Conversion

Converting remotely sensed spectrometer data to apparent reflectance is widely

considered the most important first step in the analysis of hyperspectral imagery.  This

transformation process seeks to approach the absolute reflectance of the scene’s target

materials without having to take spectral measurements in the field.  Researchers have

developed several post-flight calibration techniques that come close to the goal of

recovering the true surface reflectance.  The Empirical Line Method was used here to

convert the radiance data sets to apparent surface reflectance.

a.  Empirical Line Method (ELM)

The correction of the HYDICE data to apparent reflectance was

accomplished using the Empirical Line Method (ELM).   The ELM converts the radiance

data to an apparent surface reflectance based on the internal characteristics of the data set.

This method requires an a priori knowledge of the target area, and each scene must

include a minimum of two regions (i.e., calibration panels) with a broad range of

reflectance values.  Ground-truth-derived spectra of the calibration panels are necessary

and must also be acquired in the field.  The next step is to manually select pixels from the

scene that correspond to each target region to record their apparent reflectance values.  A

linear regression is then calculated to determine the gains and offsets for each band in the

image cube using equation 5.1:

DN = ρA + B (5.1)



69

where DN is the digital number of a specific pixel; ρ is the reflectance of a the region of

interest; A is the multiplicative term which represents a solar irradiance curve (gain); and

B is the additive term which represents atmospheric path radiance (offset).  Solving this

system of linear equations for variables A and B also provides an estimate of the standard

errors at each wavelength.  The final step is to multiply the sensor-derived DN values by

the calculated gain and then add its corresponding offset value to remove unwanted

scattering, absorption, and attenuation effects caused by the atmosphere.  This technique,

while not perfect, does facilitate comparisons between remotely sensed spectra and field-

or laboratory-derived spectral signatures (Farrand, 1992).

C.  ANALYSES

This report describes a multi-step strategy that allows for the unexpected.  To take

full advantage of the data sets, both radiance and apparent reflectance images were

examined; however, the results from the analyses showed no discernible difference

between using radiance or apparent reflectance input data.  Therefore, this report will refer

to only apparent reflectance image scenes.

1.  Forest Radiance I Data Set 

A HYDICE-derived hyperspectral image scene, transformed to an apparent surface

reflectance, analyzed in this thesis was selected from: Run 05, major frames 51-54,

acquired on 950824 at an altitude of 5,000 ft above ground level (AGL) at 0910 local time

(L).  Reference endmembers or target spectra were either sampled directly from the image

cubes being analyzed or selected from in situ-derived ground-truth measurements.  In all,

thirty nine (39) target signatures were selected for processing.  Twenty (20) endmembers

were scene-derived and selected based on the spatial context of three (3) actual

HMMWVs (V5, V6, and V7) and two (2) decoy HMMWVs (DV3 and DV4); that is, four

(4) spectra were extracted from each of these five (5) target vehicles.  Five (5) mean

spectra were derived by averaging the four (4) pixels from each of these same vehicles.



70

This averaging technique was employed because exposed target pixels are rarely

homogeneous and averaging compensates for some of the spectral variability.  The

remaining fourteen (14) spectra were derived based on the available in situ ground-truth

measurements of V5, DV3, and DV4.  A qualitative analysis of these spectral signatures is

conducted in Section D of this chapter.

Figure 5.1 is shown here to orient the reader and establish target position of the

overtly exposed vehicles arrayed during the first phase of the experiment.  All vehicles

relevant to this investigation are prominently displayed and labeled to the right of the

target array.

Figure 5.1.  Overtly Exposed Target Vehicles of Interest
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2.  Methodology/Approach

A Principal Components Analysis (PCA) was first applied to the image cube to

estimate the inherent dimensionality of the data sets being analyzed.  This intrinsic

dimensionality does not correspond to the exact number of bands in the data set since

scenes typically have significant correlation between image bands.  The intent is to

compress the information content of the data set into a relatively few principal component

(PC) bands.  Low Probability of Detection (LPD) and Spectral Angle Mapper (SAM)

target and anomaly detection techniques were then applied to physically highlight pixels

found to have similar spectral characteristics as the target spectra.  The LPD and SAM

algorithms required the selection of an endmember spectra as a target signature, with the

remaining image spectra being undesired.  The search methods yield a resultant match

relative to this target signature and is based on a non-arbitrary threshold of that measure.

D.  FINDINGS

The LPD and SAM processing techniques serve to reduce the spectral

dimensionality of the data set being analyzed.  The number of bands in the output cube is

equal to the number of target materials considered.  All of the target spectra were acquired

directly from the image scene.  The results to be presented demonstrate the robustness of

these techniques in detecting and discriminating HMMWV and decoy target vehicles.

1.  Qualitative Analysis of Signatures

Figure 5.2 is a representative sample of the natural grass background featured in

the scene.  All four spectra were taken from an area that appeared to have a uniform

distribution of healthy green vegetation.  Note the substantial similarities in the four

spectra.   The spectral response in the visible portion of the spectrum is primarily in the

green band between 0.5 µm and 0.6 µm.  The reflectance for healthy green vegetation is

usually around 10 to 15 percent.  Here the grass has a reflectance values of about 8

percent.  Reflectance increases rapidly in the NIR, reaching a maximum of around 30 to
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40 percent.   This is referred to as the chlorophyll IR band, and its steep slope is indicative

of vegetal materials.  The dips at 1.4 µm and 1.9 µm are due to atmospheric water

absorption, which is not fully compensated for in the calibration process.  Note that there

is negligible signal in the data at these wavelengths.

Figure 5.2.  Scene-Derived Spectra From Natural Grass Background

Figure 5.3 shows the scene-derived spectra taken from V5.  Observe that each

spectra exhibits a chlorophyll response similar to the natural grass background.  There are

two plausible explanations for this very curious phenomenon.  One possibility is that the

materials used in the camouflage paint was manufactured to mimic natural vegetation in

that portion of the spectrum.  It is also feasible that the sensor recorded the photons that

had first reflected off the adjacent tree-line or the surrounding grass before interacting

with the vehicle.  Further notice the significant amount of variation in the four spectra.

Table 5.1 is provided to characterize V5’s intra-spectra relationship, using as a measure of
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the correlation coefficients.  Note that the self-correlation values for the spectra range

from 0.86 to 0.96.  These statistical variances could be attributed to either the complex

signature associated with the camouflage paint schemes, but may also be the result of

specular scatter.  An interview with one ground-truth team member indicated that the

paint in the bed of at least one vehicle was extremely worn and the underlying metallic

material was clearly exposed.  Glint may have also resulted from solar energy reflecting off

the windows of the real vehicle.

Figure 5.3.  Scene-Derived Spectra From V5 (HMMWV)

Correlation in V5 Spectra

Spectra 1 Spectra 2 Spectra 3 Spectra 4
Spectra 1 1.00 0.89 0.93 0.86
Spectra 2 1.00 0.94 0.95
Spectra 3 1.00 0.96
Spectra 4 1.00

Table 5.1. Correlation Coefficients Associated With Spectra From V5
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Figure 5.4 is the ground-truth-derived spectra from V5.  Ground-truth spectra are

also available for DV3 and DV4 (plots not provided).   All ground-truth measurements

were collected using a nadir viewing angle and were sampled five times at varying heights

above the target objects: V5 at 3 and 10 m; DV3 at 100 centimeters (cm); and DV4 at 8

and 10 m.  Multiple samples were taken to obtain a representative spectral signature of the

complex paint schemes and materials used to construct the target vehicle and decoys.

Note the same wide variability is found in the ground measurements shown here, as in the

HYDICE measurements.  Although there is not a detailed correspondence between the

spectra shown in Figures 5.3 and 5.4, there are reasonably obvious spectral similarities.

The correlation coefficients associated with these spectra vary from 0.83 to 0.96.  The

ground-truth-derived spectra were not used in the analyses.

Figure 5.4.  Ground-Truth-Derived Spectra From V5 (HMMWV)

Figures 5.5 to 5.8 show the scene-derived spectral line-plots for V6, V7, DV3, and

DV4.  The HMMWVs (V6 and V7) also display the same chlorophyll edge found in the
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natural grass background and target object V5.  This feature, however, does not appear in

the spectra taken from either DV3 or DV4.   In the green band, DV4’s spectral response is

also substantially greater than the reflectance values found in the other target objects.

Spectral reflectance increases rapidly between 0.5 µm and 0.6 µm, reaching a maximum of

around 30 to 40 percent.  These features tend to support the premise that the fabric

material used to assemble the decoy alters the characteristics of the energy reflected from

its surface.  Variations in DV4’s intensity are recorded in Table 5.2.  Note that these

variations are statistically less significant than those observed in V5 (see Table 5.1).

Figure 5.5.  Scene-Derived Spectra From V6 (HMMWV)
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Figure 5.6.  Scene-Derived Spectra From V7 (HMMWV)

Figure 5.7.  Scene-Derived Spectra From DV3 (Decoy)
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Figure 5.8.  Scene-Derived Spectra From DV4 (Decoy)

Correlation in DV4 Spectra

Spectra 1 Spectra 2 Spectra 3 Spectra 4
Spectra 1 1.00 0.99 0.98 0.97
Spectra 2 1.00 0.99 0.97
Spectra 3 1.00 0.98
Spectra 4 1.00

Table 5.2.  Correlation Coefficients Associated With Spectra From DV4

 The spectral response fluctuates to some degree within each of the target objects.

To compensate for these variations in spectrum an averaging technique was applied to

calculate a mean spectra for each vehicle.  This approach was considered necessary in

order to decrease the probability of false alarms later on in the analyses.  Figure 5.9

combines these mean spectra into a single figure to illustrate the spectral diversity within

each natural and man-made target class.  V7’s means spectral signature is almost identical

to V5 and has been omitted from the plot to avoid cluttering the figure.  The individual
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spectra are labeled and displayed with an offset value to assist the reader in discerning the

inherent characteristic associated with each spectra under examination.  The different

scene elements differ substantially still, ranging form the flat spectrum of DV3 to grass

with its sharp chlorophyll edge.  Table 5.3 lists the correlation coefficients associated with

these spectra.  Note that the correlation between targets (average spectrum) is higher than

most of the values shown in Table 5.1 for target V5.

Figure 5.9.  Mean Spectra From Targets of Interest

Correlation in Mean Spectra

DV3 DV4 Grass V5 V6
DV3 1.00 0.92 0.92 0.96 0.96
DV4 1.00 0.96 0.97 0.96

Grass 1.00 0.99 0.98
V5 1.00 0.99
V6 1.00

Table 5.3.  Correlation Coefficients Associated With All Spectra
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The spectral characteristics of military paints, regardless of the underlying material,

can closely match features exhibited by some natural backgrounds.  In this instance,

however, significant differences were present between the man-made materials and the

natural grass background.  The grass has a very distinct signature compared to man-made

objects in the NIR and SWIR regions.  The man-made materials either level off or

decrease significantly within the same regions.  A direct comparison at 1.32 µm reveals

that the grass has a reflectance of nearly 39 percent (correcting for the offset), whereas

V5, V6, and V7 measure at a much lower value of 20.  All of the man-made objects, with

the exception of DV3, share a broad absorption feature between 1.5 µm and 1.7 µm.  The

grass spectra shows no sign of absorption in this region.  DV3’s spectral signature is

generally featureless across the entire continuum.  Data associated with DV3 is assessed

as suspect due to difficulties encountered during set up.  Field technicians were unable to

keep the decoy inflated during the collection process, and thus, it was sampled under less

than ideal conditions. The most striking similarities occur in spectra

taken from the same target class (i.e., HMMWVs).  Their like spectral shape and similar

reflectance values are most obvious in the regions from 0.7 µm to 1.23 µm and 1.5 µm to

1.7 µm.  The shorter wavelengths are characterized by high reflectance values, where the

latter region is dominated by a broad absorption feature.  The reader is invited to make

additional comparisons between all the scene-derived and in situ-measured spectra

signatures.

Not every target is obviously spectrally unique.  Figure 5.10 compares spectra

from two different target classes (HMMWV and M-1 Tank) to illustrate the similarities

that appear between two dissimilar vehicle types.  Both HMMWV and M-1 Tank are

easily discernible in the visible region of the spectrum, but their signatures become less

distinct longwards of 0.7 µm.  Calculating the correlation coefficients we get a value of

0.91, indicating that the apparent similarities in the spectrum is something of an illusion.

The Tank’s high intensity in the visible is probably due to the brighter hues used in
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Figure 5.10.  Mean Spectra From Targets V5 and V2

woodland camouflage paint scheme.  Note that these dissimilar vehicles have a reasonably

high correlation coefficient and, in some instances, are more closely correlated than

spectra taken from a single vehicle (i.e., V5).  This similarity made the separation of

individual spectra extremely difficult and, understandably, account for many of the false

alarms the author encountered during the analyses.

2.  Principal Components Analysis (PCA) Results

The data set was first investigated using the Principal Components Analysis

method.  Figures 5.11 and 5.12 show the first ten PC image bands that result from the

application of the algorithm.  The figures were compressed in the vertical to maximize

space and facilitate comparisons between bands.  The scene which included the exposed

vehicles was selected for the transform.  The first step was to qualitatively analyze the PC

bands from highest to lowest total variance, to observe any degenerating trends in the data

set.  The results are consistent with our understanding of the how the PCA technique
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Figure 5. 11.  Principal Components Bands 1, 2, 3, 4, and 5 (Ordered Top to Bottom)
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Figure 5.12.  Principal Components Bands 6, 7, 8, 9, and 10 (Ordered Top to Bottom)
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models the basic structure of the data set.   The first PC band is typically associated with

the total brightness in the image, whereas the next four or five bands highlight differences.

Clearly this has analytical benefits since bands one, four, and five highlight the man-made

objects in the target array.  The remaining, less-correlated bands are dominated by noise

and sensor artifacts and do not provide any information of significance to this study.

The second step involved interpreting a graphical plot that shows the most

significant components (i.e., eigenvectors) that describe scene’s variance.  Figure 5.13

provides this graphical illustration.  A linear plot is provided to improve the visual

interpretation of the PCA results, but the same general situation occurs here too.

Figure 5.13.  Linear and Logarithmic Plots of Total Variance vs. PC Bands



84

A straightforward examination of the line-plot confirms that the majority of the total

variance in the scene is relegated to the first few components.  The negative slope of the

curve begins to decrease as bands become less correlated.  The most significant change in

slope is localized between bands ten and fifteen.  A logarithmic plot of the PCA

components is also provided as an alternate way of interpreting the results.  The latter plot

shows that there is one additional drop in variance at band 200.

Calculating the inherent dimensionality was found to be a computationally

expensive process and the results somewhat difficult to quantify.   After careful

examination, the author determined that the intrinsic dimensionality of the scene could be

represented by as few as fifteen eigenvectors.

3.  Low Probability of Detection (LPD) Results

The performance of the Low Probability of Detection (LPD) method depends on

the inherent dimensionality of the data set being analyzed.  Prior to the running the LPD

algorithm, the scene’s eigenvectors were calculated and a correlation matrix built.  These

primary eigenvectors were used by the algorithm to suppress the unwanted spectral

signatures that dominate the image, leaving the remaining spectral signatures (i.e., those

not included in the selected eigenvectors) to appear as false alarms in the output.  The

LPD algorithm was applied here in an attempt to discriminate real targets and decoys,  and

those of unknown man-made or natural background materials.  Scene-derived spectra of

V5, V6, V7, DV3 and DV4 were selected as target signatures and fifteen eigenvectors

were selected to characterize the scene’s variability.  This number was chosen to ensure

that most of the undesirable background signatures would be suppressed during the

analyses.

Objects possessing similar spectral features as the target spectra, but appear in a

small enough quantity to exclude it from the scene’s primary eigenvectors, emerge as

similar targets types or false alarms.  The number of false alarms on other man-made

objects were far more prevalent than the author anticipated.  Table 5.4 provides a tabular

list of the objects that false alarmed.  The target spectra are listed in the left column and
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FALSE ALARMS

TARGET SPECTRA OBJECTS
Scene-derived (V5) V1,V2,V3,V4,V6,V7,VF3,VF7,C3,C5,C6
Scene-derived (V6) V1,V2,V3,V4,V5,V7,VF3,VF7,C3,C5,C6
Scene-derived (V7) V1,V2,V3,V4,V5,V6,VF3,VF7,C5,C6
Scene-derived (DV3) C3,C5
Scene-derived (DV4) VF1,VF2,VF4,C3,C5

Table 5.4.  False Alarm Results From LPD Algorithm

their associated false contacts appear to their right.  Figures 5.14 to 5.21 illustrate the

application of the LPD algorithm for each of the aforementioned target objects.

Figure 5.14 shows the results from the V5 spectrum.  The output from the

algorithm is a pixel value ranging, in this case, from ~ − 5,000 to ~ + 35,000.  These DNs

are proportional to the material abundance (Farrand and Harsanyi, 1995).  The scaling

from 0-30,000 was selected on the basis of this histogram in order to illustrate the

occurrences of the large data values found in the various targets.  Figure 5.15 illustrates

the range of V5’s data values as a histogram.  The broad central peak of low (absolute)

values is due to the background, indicating that the bulk of endmembers in the scene have

little spectral contrast.  Materials of low abundance (i.e., man-made objects) are not

statistically significant to the scene and will not be included in the continuum from 0.0 to

0.5 X 104, but will appear in the residual values to the right of the main distribution.

Setting a threshold, as would be done with a targeting algorithm, allows for selecting

targets.  Figure 5.16 shows the results of a threshold set for V5’s data values at 1 X 104.

Using a different target (V6) provides a very similar result, as illustrated Figure

5.17.  The distribution of data values is very similar to that found for target V5.

Thresholding the data also provides a similar result.  Running the LPD analysis for target

V7 provides a set of results similar to those found in the two previous targets.  Figure

5.18 shows the output.  Very different results were found when using the DV3 spectrum.

Figure 5.19 shows how only C3 and C4 (camouflage) really lie outside the background

data values.  Note that the histogram distribution (Figure 5.20) is significantly skewed
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Figure 5.14.  LPD Results Using V5 Target Spectra
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Figure 5.15.  LPD Data Distribution Using V5 Target Spectra
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Figure 5.16.  Target V5 Results Thresholded at 1 X 104
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Figure 5.17.  LPD Results Using V6 Target Spectra
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Figure 5.18.  LPD Results Using V7 Target Spectra
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Figure 5.19.  LPD Results Using DV3 Target Spectra
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Figure 5.20.  LPD Data Distribution Using DV3 Target Spectra
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Figure 5.21.  LPD Results Using DV4 Target Spectra
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towards negative values, in comparison to the results for targets V5, V6, and V7.  The

histogram of values are quite different from the results found in all the previous examples.

This unusual distribution is attributed to a near-flat spectral response caused by its

improper setup (Figure 5.7).  Finally, the results of running the LPD algorithm with DV4

target spectrum are shown in Figure 5.21.

The results of the applied algorithm indicates that spectral seperability between real

and decoy target classes is possible.  When the LPD algorithm was run with V5, V6, and

V7 as target spectra, neither DV3 nor DV4 flagged as false alarms.  There was, however,

a significantly high false alarm rate with the HMMWVs and the other military vehicles

deployed in the array, which is indicative of a strong spectral correlation.  The similar

spectral shape of the HMMWVs and the other military vehicles (see Figure 5.10) clearly

attributed to their misidentification.  Additionally, the camouflage nettings situated at the

end of the target array did not pass the selection criteria and were also flagged as false

alarms.  This phenomenon demonstrates a significant response among woodland

camouflage netting and vehicles sporting woodland paint schemes.  The only real military

vehicles not to false alarm were the Russian-built T72 Tanks (VF1, VF2, and VF4).  VF3

was the only T72 Tank to consistently false alarm.  This response may be attributed to the

different compounds used in the development of Russian military paints.

The LPD algorithm was then applied to the data cube using DV3 and DV4 as

target spectra.  The results, as expected, show that none of the real HMMWV targets false

alarmed using the decoy spectra, which further supports the assertion that the constituent

materials are differentiable.  This successful discrimination can be traced back to the high

spectral contrast between these two dissimilar target classes and the remarkable

similarities inherent in their individual class.  Other  man-made objects not to pass the

selection criteria include the three Russian T72 Tanks and two of the three camouflage

nets.  Results generated using DV3 spectra show that the false alarm on the camouflage

netting is less concentrated; that is, the total number of occurrences come into view in far

fewer quantities than in any of the other results.  This phenomenon, coupled with the fact
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that the other decoy (DV4) was not alarmed, suggests that the improper deployment of

DV3 had a deleterious effect on the resultant output.

4.  Spectral Angle Mapper (SAM) Results

The Spectral Angle Mapper (SAM) technique was applied to the same data set

using the same overall approach employed in the LPD analyses.  Target objects V5, V6,

V7, DV3, and DV4 were used as target spectra.  The SAM algorithm is applied in two

stages.  First, a “Rule” image is generated.  This is obtained by (effectively) taking the dot

product of the spectrum at each pixel with the target spectrum.  The resulting ensemble of

angles is presented as a gray scale image, scaled here from 0.0 and 0.3 radian.

Classification is done by thresholding the results at a smaller angle, here defined as 0.1

radian.  Objects that have spectra nearly identical to the target spectra will pass the

selection criteria (Θ  < 0.1), and will be colored black.  The remaining pixels are colored

white.

The number and location of the false alarms are near-identical to those found in the

LPD analyses.  Table 5.5 provides a tabular list of the objects that false alarmed in the

Rule Image.  Figures 5.22, 5.25, 5.27, 5.29, and 5.31 shows where the number of false

alarms occurred in the scene.  The data are displayed over the 0.0 and 0.3 radian threshold

range, and are reasonably quantifiable using the scale to the figure’s right.  Figure 5.23

shows the total number of occurrences versus output value in radians.  The ordinates of

the Y-axis is based on a logarithmic scale.  In order to avoid zero values, the results are

actually plotted as one (1) plus their occurrence value.  Note that the contacts appearing

to the left of the solid vertical line, shown here at 0.1 radian, represent the occurrences

that appear in the classifier.  Rule Image occurrences could be shown by moving the same

vertical line out to 0.3 radian.  Table 5.6 provides a tabular list of the objects that false

alarmed in the SAM Classifier.  Figures 5.24, 5.26, 5.28, 5.30, and 5.32 show the false

alarms generated.  The data are displayed based on a threshold angle of 0.1 radian.

Attempts to reduce the false alarm rate by incrementally reducing the threshold angle had

little effect on the final output.
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FALSE ALARMS
TARGET SPECTRA OBJECTS
Scene-derived (V5) V1,V2,V3,V4,V6,V7,VF3,VF7,C3,C5,C6
Scene-derived (V6) V1,V2,V3,V4,V5,V7,VF3,VF7,C3,C5,C6
Scene-derived (V7) V1,V2,V3,V4,V5,V6,VF1,VF2,VF3,VF4,VF7,

C3,C5,C6
Scene-derived (DV3) V1,V3,V4,VF1,VF2,VF3,VF4,VF5,VF6, VF7
Scene-derived (DV4) VF1,VF2,VF4,VF5,VF6,VF7,DV3

Table 5.5.  SAM Rule False Alarms

FALSE ALARMS
TARGET SPECTRA OBJECTS
Scene-derived (V5) V1,V2,V3,V4,V6,V7,VF3,VF7
Scene-derived (V6) V1,V2,V4,V5,V7
Scene-derived (V7) V1,V3,V4,V5,V6,VF3
Scene-derived (DV3) VF6
Scene-derived (DV4) None

Table 5.6.  SAM Classifier False Alarms

The findings indicate that spectral discrimination between the real and decoy target

classes is possible using this technique.  When the SAM algorithm was applied using V5,

V6, and V7 as target spectra, neither DV3 nor DV4 appeared as false alarms.

The algorithm did produce nearly the same false alarm pattern observed in the LPD

analyses, with only a few notable exceptions.  The actual HMMWVs consistently false

alarmed on the other military vehicles deployed throughout the scene.  This is further

evidence to support the assertion that a strong correlation exists between the spectral

characteristics of  the paint used by the real military vehicles.  The absence of false alarms

on the camouflage netting is the most obvious feature missing in the SAM classifiers.

These results clearly indicate that the both camouflage nets and decoys spectra have an

angular difference of greater than 0.1 radian.  The camouflage netting is however visible in

each of the Rule Image(s), and thus, establishes that its angular separation falls between

0.1 and 0.3 radian.  For the first time, other, quasi-targets such as the tire tracks, dirt

roads, and areas of exposed soil appear in the Rule image.
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The SAM algorithm was then applied to the data cube using DV3 and DV4 as

target spectra.  The results show that none of the real target vehicles or camouflage

netting false alarmed in the SAM classifier.  The only man-made object not to pass DV3’s

selection criteria was a BTR (VF6).  The false alarms generated in DV4’s Rule Image is of

considerable interest.  The large angle (threshold criteria) separation allows us to see

exactly how unique the decoy’s spectra when is compared to the other objects in the

target array.   Note that neither the Rule Image nor SAM Classifier figure show any

evidence of misidentification with any of the HMMWVs.  Distinctive patterns are clear

indicators of a spectral distinctiveness between the military camouflage paint covering the

real vehicles and the canvas materials used to construct the decoys.  The SAM algorithm

further demonstrated the capability to detect man-made materials against a natural grass

background.   Findings associated with DV3’s spectra should be considered suspect.
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Figure 5.22.  SAM Rule Image Using V5 Spectra
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Figure 5.23.  SAM Rule Image Data Distribution Using V5 Spectra
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Figure 5.24.  SAM Classifier Using V5 Spectra



101

Figure 5.25.  SAM Rule Image Using V6 Spectra
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Figure 5.26.  SAM Classifier Using V6 Spectra
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Figure 5.27.  SAM Rule Image Using V7 Spectra
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Figure 5.28.  SAM Classifier Using V7 Spectra
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Figure 5.29.  SAM Rule Image Using DV3 Spectra
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Figure 5.30.  SAM Classifier Using DV3 Spectra
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Figure 5.31.  SAM Rule Image Using DV4 Spectra
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Figure 5.32.  SAM Classifier Using DV4 Spectra
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VI.  CONCLUSIONS AND RECOMMENDATIONS

Operation Forest Radiance I was the HYMSMO program’s first attempt at

examining the physics and phenomenology of various military target classes under

different environmental conditions.  The author found the experiment to be very well

designed and the collection site an ideal location to conduct the myriad mini-experiments

selected for research.  The HYDICE instrument and data processing techniques employed

during the exercise also proved themselves extremely capable given the high quality of the

data made available for exploitation.  The resultant outputs generated by the PCA, LPD,

and SAM exploitation techniques further demonstrated the capability of today’s

hyperspectral imaging technologies to satisfy the decoy discrimination problem being

investigated in this thesis.

The PCA method produced the information needed to estimate the intrinsic

dimensionality of the image cube being analyzed.  However, this information came at a

premium price.  The algorithm was found to be computationally expensive to run and the

results somewhat difficult to interpret.  The PCA algorithm did not provide any purposeful

information (beyond computing the primary eigenvectors that model the endmembers in

the scene) that contributed directly to solving the research objective.   Another technique,

however, did use these results to suppress the unwanted background signatures in the

image and facilitated detection and discrimination of the targets of interest.

The LPD algorithm performed extremely well at detecting residual spectra.  These

residual spectra did not contribute significantly to the scene’s overall  statistics, and thus,

flagged as false alarms.  The LPD method was an effective technique for suppressing the

background signatures using the scene’s primary eigenvectors and for discriminating

between the HMMWVs and decoys.  The SAM technique performed exceptionally well at

discriminating these target objects.  The SAM proved to have a significant advantage over

the LPD method when it comes to obviating target misidentifications.  For example, the

false alarms observed with the LPD algorithm (i.e., camouflage netting) suggest an
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influence from the relative brightness value of the camouflage material.  The SAM

algorithm is able to match the spectra without giving statistical weight to their relative

brightness values to produce a quantifiable measure of effectiveness.

The multivariate approach employed during the analyses proved to be a

worthwhile strategy.  The findings clearly show that the actual and decoy target objects

are differentiable in a natural grass environment.  The low number of false alarms on the

decoys serves as strong evidence that the objects are being identified, not just detected.

The significant high false alarm rate of the real vehicles indicates that the spectral

signatures are actually the signature of the surface paint, not the vehicle itself.   The

different hues in the paint scheme did prevent the possibility of acquiring homogeneous

pixels; thus, a single pixel is characterized by a one signature that represents all of the

paint’s spectral components.  This complex pixel problem seemed to stress the

performance of the LPD and SAM algorithms.

Hyperspectral technologies can be a viable tactical asset if the technology is

allowed to advance at its current rate.  Despite these initial successes, however, further

analysis will be required to determine the practicality of using hyperspectral technologies

to satisfy many of the requirements relevant to the warfighter.  Any negative findings

concerning this data set or analysis techniques to discriminate anomalous contacts should

not be extrapolated to past or future experiments.  The author recommends that future

studies include decoys constructed of different types of materials.  Detailed laboratory

experiments should be conducted to assess the spectral variability associated with military

paint compounds.
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